

A first look at

 Google Android

Tomas Katysovas

tkatysovas@unibz.it

Free University of Bolzano, Internet Technologies 2. 2007-2008

 A first look at Google Android

Tomas Katysovas Page 2 1/19/2008

Abstract

This paper examines an open source mobile phone platform Android. It explains its’
advantages and disadvantages, the basic features and the market strategy. I review the
adaptation of this new technology from the view of prospective mobile software
developers, customers and manufacturers.

The purpose of this report is to present to the user the new and promising mobile platform
based on the Linux operating system and provided by Google. Additionally, I introduce
Open Source infrastructure which not only supports development, but also has the
potential to become a main business activity in the future.

 A first look at Google Android

Tomas Katysovas Page 3 1/19/2008

Contents

Abstract ... 2

Introduction ... 4

The Birth of Android .. 4

Android Features ... 5

System Architecture .. 6

Developing Applications .. 8

Application Building Blocks... 8

Code example.. 10

Application Lifecycle.. 14

Security Issues .. 18

Android and Java ME ... 19

Similarities .. 19

“Hello World” example .. 20

Market Research ... 22

A prospective customer... 22

Speculations with cellular carriers .. 23

Manufacturers’ war ... 24

Mobile Future.. 25

Mobile Ads.. 25

Mobile Services .. 26

Conclusion .. 27

References ... 28

 A first look at Google Android

Tomas Katysovas Page 4 1/19/2008

Introduction

The Birth of Android

Firstly, I would like to mention a small company Android Inc. based on the software
development for mobile phones, which was acquired by Google for unknown amount of
money on July 2005. As the experienced team started to work hardly in Google Campus,
it was a first serious sign about Google entering mobile phone market. In 2007, the Open
Handset Alliance (OHA) was created to develop open standards for mobile devices. It
consisted of 34 grand members, such as Google itself, NVIDIA, Intel, Motorola, T-
Mobile and other mobile operators, handset manufacturers, software and other
companies. As OHA stands for open mobile platform, a great race has started between
OHA and main competitors Apple, Microsoft, Symbian and others. Microsoft launched
Windows Mobile 6.0 version with full updated Office Mobile and other features.
Symbian with over 110 million smartphones released OSv.9.5, and Apple stroked market
with iPhone. The entire world was waiting for the response from Google with visionary
Gphone, a single mobile device which could compete with iPhone and other mobile
phones. OHA came with better solution – Google Android – first truly open mobile
phone platform based on Linux, with clear and simple user interface and applications,
created in Java. This strategy, which is about to declare not a single Gphone, but to put
Android into existing and new mobiles devices and to make thousands of Gphones, gives
mobile operators and device manufacturers significant freedom and flexibility to design
products. As Google Android will be truly released in 2008 with its source code, at this
moment Google announced Android SDK together with competition, which provides 10
million dollars in awards for Android developers. This idea seems to be quit clear and
logical, in order to speed up and boost Java developers, but actually the contest slowed
down the knowledge integration. The contest has effectively caused developers not to
share their code to others. Therefore, I found a lack of answering to questions and other
support on Android groups over the internet. Nevertheless, I believe there will be plenty
of code available to help inexperienced developers make ideas come to life.

 A first look at Google Android

Tomas Katysovas Page 5 1/19/2008

Android Features

Application Framework is used to write applications for Android. Unlike other embedded
mobile environments, Android applications are all equal, for instance, an applications
which come with the phone are no different than those that any developer writes. The
framework is supported by numerous open source libraries such as openssl, sqlite and
libc. It is also supported by the Android core libraries. From the point of security, the
framework is based on UNIX file system permissions that assure applications have only
those abilities that mobile phone owner gave them at install time.

Dalvik virtual machine – it is extremely low-memory based virtual machine, which was
designed specially for Android to run on embedded systems and work well in low power
situations. It is also tuned to the CPU attributes. The Dalvik VM creates a special file
format (.DEX) that is created through build time post processing. Conversion between
Java classes and .DEX format is done by included “dx” tool.

Integrated browser – in my opinion, Google made a right choice on choosing WebKit as
open source web browser. They added a two pass layout and frame flattening. Two pass
layout loads a page without waiting for blocking elements, such as external CSS or
external JavaScript and after a while renders again with all resources downloaded to the
device. Frame flattening converts founded frames into single one and loads into the
browser. These features increase speed and usability browsing the internet via mobile
phone.

Optimized graphics – as Android has 2D graphics library and 3D graphics based on
OpenGL ES 1.0, possibly we will see great applications like Google Earth and
spectacular games like Second Life, which come on Linux version. At this moment, the
shooting legendary 3D game Doom was presented using Android on the mobile phone.

SQLite – extremely small (~500kb) relational database management system, which is
integrated in Android. It is based on function calls and single file, where all definitions,
tables and data are stored. This simple design is more than suitable for a platform such as
Android.

There are a number of hardware dependent features, for instance, a huge media and
connections support, GPS, improved support for Camera and simply GSM telephony. A
great work was done for the developers to start work with Android using device
emulator, tools for debugging and plugin for Eclipse IDE. Finally, as Android just
started its’ journey to the mobile market, we are going to see much more features through
the developed applications.

 A first look at Google Android

Tomas Katysovas Page 6 1/19/2008

System Architecture

google

Android Architecture is based on Linux 2.6 kernel. It helps to manage security, memory
management, process management, network stack and other important issues. Therefore,
the user should bring Linux in his mobile device as the main operating system and install
all the drivers required in order to run it. Android provides the support for the Qualcomm
MSM7K chipset family. For instance, the current kernel tree supports Qualcomm MSM
7200A chipsets, but in the second half of 2008 we should see mobile devices with stable
version Qualcomm MSM 7200, which includes major features:

- WCDMA/HSUPA and EGPRS network support
- Bluetooth 1.2 and Wi-Fi support
- Digital audio support for mp3 and other formats
- Support for Linux and other third-party operating systems
- Java hardware acceleration and support for Java applications
- Qcamera up to 6.0 megapixels
- gpsOne – solution for GPS
- and lots of other.

 A first look at Google Android

Tomas Katysovas Page 7 1/19/2008

In the next level we can see a set of native libraries written in C/C++, which are
responsible for stable performance of various components. For example, Surface
Manager is responsible for composing different drawing surfaces on the mobile screen. It
manages the access for different processes to compose 2D and 3D graphic layers.
OpenGL ES and SGL make a core of graphic libraries and are used accordingly for 3D
and 2D hardware acceleration. Moreover, it is possible to use 2D and 3D graphics in the
same application in Android. The media framework was provided by PacketVideo, one of
the members of OHA. It gives libraries for a playback and recording support for all the
major media and static image files. FreeType libraries are used to render all the bitmap
and vector fonts. For data storage, Android uses SQLite. As I mentioned before, it is
extra light rational management system, which locates a single file for all operations
related to database. WebKit, the same browser used by Apples’ Safari, was modified by
Android in order to fit better in a small size screens.

At the same level there is Android Runtime, where the main component Dalvik Virtual
Machine is located. It was designed specifically for Android running in limited
environment, where the limited battery, CPU, memory and data storage are the main
issues. Android gives an integrated tool “dx”, which converts generated byte code from
.jar to .dex file, after this byte code becomes much more efficient to run on the small
processors. As the result, it is possible to have multiple instances of Dalvik virtual
machine running on the single device at the same time.
The Core libraries are written in Java language and contains of the collection classes, the
utilities, IO and other tools.

After that, we have Application Framework, written in Java language. It is a toolkit that
all applications use, ones which come with mobile device like Contacts or SMS box, or
applications written by Google and any Android developer. It has several components
which I will discuss. The Activity Manager manages the life circle of the applications and
provides a common navigation backstack for applications, which are running in different
processes. The Package Manager keeps track of the applications, which are installed in
the device. The Windows Manager is Java programming language abstraction on the top
of lower level services that are provided by the Surface Manager. The Telephony
Manager contains of a set of API necessary for calling applications. Content Providers
was built for Android to share a data with other applications, for instance, the contacts of
people in the address book can be used in other applications too. The Resource Manager
is used to store localized strings, bitmaps, layout file descriptions and other external parts
of the application. The View System generates a set of buttons and lists used in UI. Other
components like Notification manager is used to customize display alerts and other
functions.

At the top of Android Architecture we have all the applications, which are used by the
final user. By installing different applications, the user can turn his mobile phone into the
unique, optimized and smart mobile phone.

 A first look at Google Android

Tomas Katysovas Page 8 1/19/2008

Developing Applications

Application Building Blocks

Google provides three versions of SDK: for Windows, for Mac OSX and one for Linux.
The developer can use Android plugin for Eclipse IDE or other IDEs such as intelliJ.

First step for Android developer is to decompose the prospective application into the
components, which are supported by the platform. The major building blocks are these:

- Activity
- Intent Receiver
- Service
- Content Provider

Activity – user interface component, which corresponds to one screen at time. It means
that for the simple application like Address Book, the developer should have one activity
for displaying contacts, another activity component for displaying more detailed
information of chosen name and etc.
Intent Receiver – wakes up a predefined action through the external event. For example,
for the application like Email Inbox, the developer should have intent receiver and
register his code through XML to wake up an alarm notification, when the user receives
email.
Service – a task, which is done in the background. It means that the user can start an
application from the activity window and keep the service work, while browsing other
applications. For instance, he can browse Google Maps application while holding a call
or listening music while browsing other applications.
Content Provider – a component, which allows sharing some of the data with other
processes and applications. It is the best way to communicate the applications between
each other.

Secondly, a developer should predefine and list all components, which he wants to use in
the specific AndroidManifest.xml file. It is a required file for all the applications and is
located in the root folder. It is possible to specify all global values for the package, all the
components and its classes used, intent filters, which describe where and when the certain
activity should start, permissions and instrumentation like security control and testing.
Here is an example of AndroidManifest.xml file:

1. <?xml version="1.0" encoding="utf-8"?>
2. <manifest xmlns:android="http://schemas.android.com/apk/res/android"
3. package="dk.mdev.android.hello">
4. <application android:icon="@drawable/icon">

 A first look at Google Android

Tomas Katysovas Page 9 1/19/2008

5. <activity class=".HelloAndroid" android:label="@string/app_name">
6. <intent-filter>
7. <action android:value="android.intent.action.MAIN" />
8. <category

android:value="android.intent.category.LAUNCHER"/>
9. </intent-filter>
10. </activity>
11. </application>
12. </manifest>

The line 2 is a namespace declaration, which makes a standard Android attributes
available for that application. In the line 4 there is a single <application> element, where
the developer specifies all application level components and its properties used by the
package. Activity class in the line 5 represents the initial screen the user sees and it may
have one or more <intent-filter> elements to describe the actions that activity supports.

There is the activityCreator script, which generates the following files and folders in your
Eclipse workplace:
- AndroidManifest.xml file discussed before;
- Build.xml – an ant file which is used to package an application;
- src/ - source directory
- bin/ - the output directory

The special file R.java is generated by Eclipse in the source code folder. It is an index
into all the resources defined in the file and is useful for locating the specific reference.

Android lets developers to use debugging and testing tools like DDMS (Dalvik Debug
Monitor Server), logcat and others.

 A first look at Google Android

Tomas Katysovas Page 10 1/19/2008

Code example

It is possible to send XMPP messages in Android. XMPP – open Extensible Messaging
and Presence Protocol for near-real-time instant messaging (IM) and presence
information. As Google Talk provides XMPP gateways to its service, some modifications
of Gtalk are already created for Android platform. Here is a source code of unofficial
Gtalk application, written by Davanum Srinivas (http://davanum.wordpress.com):

GTalkClient.java

// firstly, all imported packages are listed at the beginning of the code

package org.apache.gtalk;

import android.app.Activity; //Activity class takes care of creating a window for UI
import android.app.NotificationManager; //Class for event notifications
import android.content.ComponentName; //Identifier for one of application component
import android.content.Context; //Abstract class for global information about

//an application environment
import android.content.Intent; //Abstract description of an operation to be performed
import android.content.ServiceConnection; //Interface for monitoring the state of an
 //application service
import android.database.Cursor; //Interface for providing random read-write access to
 //the result set returned by a database query
import android.os.Bundle; //Mapping from String values to various types
import android.os.DeadObjectException; //Exception for an object, which does not exists
import android.os.IBinder; //Interface for a remotable Binder object
import android.provider.Im;
import android.text.TextUtils; //Monitor or modify keypad input
import android.util.Log; //API for sending log output
import android.view.View; //Used to create interactive graphical user interfaces
import android.widget.*; //Visual UI elements
import com.google.android.xmppService.IXmppService; //IXmppService interface
 //definition file for XMPP service
import com.google.android.xmppService.IXmppSession; //IXmppSession interface
 //definition file for XMPP session
import com.google.android.xmppService.Presence; //Abstract presentation of the user’s
//presence information

public class GTalkClient extends Activity implements View.OnClickListener {
 private static final String LOG_TAG = "GTalkClient";

 IXmppSession mXmppSession = null;
 EditText mSendText;
 ListView mListMessages;

 A first look at Google Android

Tomas Katysovas Page 11 1/19/2008

 EditText mRecipient;
 Button mSend;
 Button mSetup;

// Called with the activity is first created.

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 // gather the troops
 mSendText = (EditText) findViewById(R.id.sendText);
 mListMessages = (ListView) findViewById(R.id.listMessages);
 mRecipient = (EditText) findViewById(R.id.recipient);
 mSend = (Button) findViewById(R.id.send);
 mSetup = (Button) findViewById(R.id.setup);

 // set up handler for on click
 mSetup.setOnClickListener(this);
 mSend.setOnClickListener(this);

 bindService((new Intent()).setComponent(

com.google.android.xmppService.XmppConstants.XMPP_SERVICE_COMPONENT),
 null, mConnection, 0);
 }

// Let the user know there was an issue

 private void logMessage(CharSequence msg) {
 NotificationManager nm = (NotificationManager) getSystemService(
 Context.NOTIFICATION_SERVICE);

 nm.notifyWithText(123, msg, NotificationManager.LENGTH_LONG, null);
 }

// Here’s the code that gets a XMPP session using a service connection

 private ServiceConnection mConnection = new ServiceConnection() {
 public void onServiceConnected(ComponentName className, IBinder service) {
 // This is called when the connection with the XmppService has been
 // established, giving us the service object we can use to
 // interact with the service. We are communicating with our
 // service through an IDL interface, so get a client-side
 // representation of that from the raw service object.

 A first look at Google Android

Tomas Katysovas Page 12 1/19/2008

 IXmppService xmppService = IXmppService.Stub.asInterface(service);

 try {
 mXmppSession = xmppService.getDefaultSession();
 if (mXmppSession == null) {
 // this should not happen.
 logMessage(getText(R.string.xmpp_session_not_found));
 return;
 }
 mXmppSession.setPresence(new
Presence(Im.PresenceColumns.AVAILABLE, "Am here now!"));
 } catch (DeadObjectException ex) {
 Log.e(LOG_TAG, "caught " + ex);
 logMessage(getText(R.string.found_stale_xmpp_service));
 }

 mSendText.setEnabled(true);
 }

 public void onServiceDisconnected(ComponentName componentName) {
 // This is called when the connection with the service has been
 // unexpectedly disconnected -- that is, its process crashed.
 mXmppSession = null;
 mSendText.setEnabled(false);
 }
 };

 // Handle clicks on the 2 buttions

 public void onClick(View view) {
 if (view == mSetup) {
 Log.i(LOG_TAG, "onClick - Setup");
 // Run a query against CONTENT_URI = "content://im/messages"
 Cursor cursor = managedQuery(Im.Messages.CONTENT_URI, null,
 "contact=\'" + mRecipient.getText().toString() + "\'", null, null);

 // Display the cursor results in a simple list
 // Note that the adapter is dynamic (picks up new entries automatically)
 ListAdapter adapter = new SimpleCursorAdapter(this,
 android.R.layout.simple_list_item_1,
 cursor, // Give the cursor to the list adapter
 new String[]{Im.MessagesColumns.BODY},
 new int[]{android.R.id.text1});

 this.mListMessages.setAdapter(adapter);
 } else if (view == mSend) {

 A first look at Google Android

Tomas Katysovas Page 13 1/19/2008

 // use XmppService to send data message to someone
 String username = mRecipient.getText().toString();
 if (!isValidUsername(username)) {
 logMessage(getText(R.string.invalid_username));
 return;
 }

 if (mXmppSession == null) {
 logMessage(getText(R.string.xmpp_service_not_connected));
 return;
 }

 try {
 mXmppSession.sendTextMessage(username, 0,
mSendText.getText().toString());
 } catch (DeadObjectException ex) {
 Log.e(LOG_TAG, "caught " + ex);
 logMessage(getText(R.string.found_stale_xmpp_service));
 mXmppSession = null;
 }
 }
 }

 private boolean isValidUsername(String username) {
 return !TextUtils.isEmpty(username) && username.indexOf('@') != -1;
 }
}

AndroidManifest.xml

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.apache.gtalk">
 <application>
 <activity class=".GTalkClient" android:label="GTalk Client">
 <intent-filter>
 <action android:value="android.intent.action.MAIN" />
 <category android:value="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

 A first look at Google Android

Tomas Katysovas Page 14 1/19/2008

Application Lifecycle

In Android, every application runs in its own process, which gives better performance in
security, protected memory and other benefits. Therefore, Android is responsible to run
and shut down correctly these processes when it is needed.

In the following example I will display a process flow from the Android System point of
view to get a clear idea how the applications behave. Let assume the possible scenario: A
user talks to his friend via mobile phone and he is asked to browse the internet (a talk is
hold for a moment), find a picture of him in his Picasa Album, send it via Email back to
his friend and resume a talk.

In this situation, there are 4 different applications and 4 different processes running, but
from the user point of view none of them are important, as Android manages CPU work
and memory usage by itself. It means the user can travel through the applications forward
and back without thinking about how much memory is left or which processes are run at
the time.

Firstly, as the user is talking to his friend, a specific Talk application is opened, which
contains the activity manager. In the following stack we can see two processes running,
the main system process and Talk application process. Moreover, before going to Web
Browser application, the system saves a Talk state T in order to remember that process:

 A first look at Google Android

Tomas Katysovas Page 15 1/19/2008

At this point, as a user holds a talk and opens a web browser, the system creates a new
process and new web browser activity is launched in it. Again, the state of the last
activity is saved (W):

After that, the user browses the internet, finds his picture in Picasa album and saves it to
particular folder. He does not close a web browser, instead he opens a folder to find saved
picture. The folder activity is launched in particular process:

 A first look at Google Android

Tomas Katysovas Page 16 1/19/2008

At this point, the user finds his saved picture in the folder and he creates a request to open
an Email application. The last state F is saved. Now assume that the mobile phone is out
of the memory and there is no room to create a new process for Email application.
Therefore, Android looks to kill a process. It can not destroy Folder process, as it was
used previously and could be reused again, so it kills Web Browser process as it is not
useful anymore and locates a new Email process instead:

The user opens Email application and sends a picture to his friend via email. Now he
wants to go back to the Talk application and to resume a talk to his friend. Because of the
previously saved states, this work is done fast and easily. In this example, Email
application is popped out and the user sees a previous Folder application:

 A first look at Google Android

Tomas Katysovas Page 17 1/19/2008

Next, the user goes back to Web Browser application. Unfortunately, web browser
process was killed previously so the system has to kill another process (in our case it is
Email application process, which is not used anymore) in order to locate Web Browser
process and manage the stack memory:

and finally:

Now the user comes back to the Talk application and resumes his talk with his friend.
Because of the saved states, going back procedure is fast and useful, because it
remembers previous activities and its views.
This example shows, that it does not matter how many applications and processes are
active or how much available memory is left, Android it manages fast and without a user
interaction.

 A first look at Google Android

Tomas Katysovas Page 18 1/19/2008

Security Issues

It is quite difficult to discuss all the security issues, as no Android phone is build yet. By
the prediction, Android mobile phone platform is going to be more secure than Apple’s
iPhone or any other device in the long run. There are several solutions nowadays to
protect Google phone from various attacks. One of them is security vendor McAfee, a
member of Linux Mobile (LiMo) Foundation. This foundation joins particular companies
to develop an open mobile-device software platform. Many of the companies listed in the
LiMo Foundation have also become members of the Open Handset Alliance (OHA). As a
result, Linux secure coding practice should successfully be built into the Android
development process. However, open platform has its own disadvantages, such as source
code vulnerability for black-hat hackers. In parallel with great opportunities for mobile
application developers, there is an expectation for exploitation and harm. Stealthy
Trojans hidden in animated images, particular viruses passed from friend to friend, used
for spying and identity theft, all these threats will be active for a long run.
Another solution for such attacks is SMobile Systems mobile package. SecurityShield –
an integrated application that includes anti-virus, anti-spam, firewall and other mobile
protection is up and ready to run on the Android operating system. Currently, the main
problem is availability for viruses to pose as an application and do things like dial phone
numbers, send text messages or multi-media messages or make connections to the
Internet during normal device use. It is possible for somebody to use the GPS feature to
track a person’s location without their knowledge. Hence SMobile Systems is ready to
notify and block these secure alerts. But the truth is that it is not possible to secure your
mobile device or personal computer completely, as it connects to the internet. And
neither the Android phone nor other devices will prove to be the exception.

 A first look at Google Android

Tomas Katysovas Page 19 1/19/2008

Android and Java ME

Similarities

Java Platform, Micro Edition or Java ME (previously known as Java 2 Platform, Micro
Edition or J2ME) is a specification of a subset of the Java platform aimed at providing a
certified collection of Java APIs for the development of software for small, resource-
constrained devices. Though, do not confuse it with Google Android, even there are some
similarities:

- Eclipse plugins for J2ME and Android look very similar and interface very well
with their respective SDKs;

- Both J2ME and Android seem to share the same core Java APIs, such as java.util
and java.net. But their APIs for graphics, UIs, etc. are very dissimilar and
philosophies for developing applications are very different;

- Android seems to be more tightly integrated (up to even the OS services provided
and how they interact with the APIs), while J2ME is far more liberal in its
specifications for the developer and mobile device manufacturer.

A slower application development and performance – these are the main disadvantages
Java's J2ME have for today. J2ME apps are second-rate citizens in the phones. They do
not have an access to most of the low-level features, like call API, external connectivity
(USB) and other. There is no way to replace or extend built-in phone apps like contacts,
calendar and calls. For instance, J2ME applications in Nokia devices with S60 work great
for standard tasks. But more advanced users find difficulties handling Wi-Fi access points
with S60, because APIs simply do not seem to be exposed to J2ME. A user may find
difficulties synchronizing Google Calendar with his device - nobody seems to have been
able to figure out how to make the J2ME calendar interfaces work correctly on S60.
There are lots of problems with Java applications on S60, even though S60 probably has
one of the best Java implementations. Android fills a void in Java Mobile applications by
providing API to build richer applications - more useful for Smart Phones which contain
the ability to provide these types of functionalities. If J2ME filled every void, Android as
an API wouldn't be needed (though Android as an OS could still fill a void). Google has
written its own virtual machine for Android most likely as a way to get around licensing
issues with Sun. However, Android does not include a complete and compliant Java stack
(neither JME nor JSE); only a subset and therefore it is technically not the Java platform,
it just looks a lot like it.

 A first look at Google Android

Tomas Katysovas Page 20 1/19/2008

“Hello World” example

Here is a simple “Hello World” application, written both in J2ME and Google Android. It
is possible to use NetBeans v6.0 for J2ME UI easier implementation. Despite the fact,
that NetBeans generated source code is quit big, here is a simpler J2ME code version (not
using NetBeans):

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

public class HelloWorld extends MIDlet implements CommandListener {
 private Command exitCommand;
 private TextBox tbox;

 public HelloWorld() {
 exitCommand = new Command("Exit", Command.EXIT, 1);
 tbox = new TextBox("Hello world MIDlet", "Hello World!", 25, 0);
 tbox.addCommand(exitCommand);
 tbox.setCommandListener(this);
 }

 protected void startApp() {
 Display.getDisplay(this).setCurrent(tbox);
 }

 protected void pauseApp() {}
 protected void destroyApp(boolean bool) {}

 public void commandAction(Command cmd, Displayable disp) {
 if (cmd == exitCommand) {
 destroyApp(false);
 notifyDestroyed();
 }
 }
}

 A first look at Google Android

Tomas Katysovas Page 21 1/19/2008

HelloWorld.java class written in Google Android using Eclipse:

import android.widget.TextView;

public class HelloWorld extends Activity {
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 TextView tv = new TextView(this);
 tv.setText("Hello World");
 setContentView(tv);
 }
}

Firstly, a text label object is imported through TextView class. After that TextView
constructor is created and we tell what to display (tv.setText(“Hello World”)). Finally,
we connect constructed TextView with the on-screen display.
In conclusion, Android code is simple to understand while J2ME code requires better
understanding in Java mobile development and NetBeans graphical tool.

 A first look at Google Android

Tomas Katysovas Page 22 1/19/2008

Market Research

A prospective customer

A new generation of mobile device users is coming in the next decade. These users are
going to explore the mobile internet afresh with its new features, compatible mobile
phones, new services and applications. One of the Google mobile software engineers
Dave Burke predicts, that by 2010, the number of global mobile phone subscribers is
expected to be 4 billion, comparing to the number of desktop internet connections, which
stand at 1.2 billion today. This is a huge leap for mobile advertisement business, where
revenue could rise 8 times more by 2012. As other mobile platforms failed to do so for
seven years, Google Android is going to present new solutions through the fast search
engine, open source applications and other services. The Kelsey Group, which works
with public opinion polls and statistics, published the results released October 11 2007,
which say, that one hundred out of 500, or 20 percent of people would be interested in
purchasing a Google phone. Despite the fact, that Google Android is in alpha version
and it is unknown for the customers and mobile market, the results look promising.

The diagram below shows the study, which was conducted in September 2007 via an
online 30-question survey of 500 U.S. mobile phone users aged 18 and older.

 A first look at Google Android

Tomas Katysovas Page 23 1/19/2008

People do not find a good Internet experience in their phones today, so they are more
interested in gravitating toward an Internet or technology company telephone because
they think connectivity between devices and to the Internet is going to be much better on
those phones. They use Google search, GMail, Google Maps, Picasa albums and other
popular services on their computers, and this is what they expect to have in their mobile
devices in the close future.

Speculations with cellular carriers

Google Android enters a tangled mess of cellular carrier world. As a new player in the
mobile market, Android brings an open platform with the new rules. On the one hand
there is OHA with major companies and carries, such as T-Mobile and Sprint. On the
other hand, there are two largest cellular carries AT&T and Verizon Wireless in United
States, which have a vested interest in operating systems of their own. It is predictable,
that Sprint or T-Mobile will be first carriers providing devices with Google Android. This
ensures equal development time for the networks, GSM/HSDPA side and CDMA/EV-
DO. But the main problem, which faces all the cellular carriers around the world, is the
availability to download and use free applications that could block almost every
communications product they sell. A user does not need to pay for GPS mapping service
anymore. He can simply download a free one that taps into Google Maps. Why pay for
text messages to his friends when he can download an instant messaging client? In fact,
why pay for cellular minutes at all when a user can download Skype, Gtalk or other client
and just use his data plan? OS’s such as Android threaten carriers with a loss of control
over the applications on the phones on their network and they may find themselves
becoming nothing more than wireless Internet service providers, forced to compete on
price and bandwidth. Another aspect is hardware cost: Google Android owns 10 percent
of the total cost of a phone, which combined with falling hardware prices could
eventually result a fertile unlocked handset market. In conclusion, Google has a better
start in this race than any company had before to bring new rules to the mobile market
with all carriers, mobile devices and its customers.

 A first look at Google Android

Tomas Katysovas Page 24 1/19/2008

Manufacturers’ war

Presently, Google main competitors like Nokia, Microsoft and Apple do not see Google
Android as a serious rival or threat to their business strategies. "It really sounds that they
are getting a whole bunch of people together to build a phone and that's something we've
been doing for five years," said Scott Horn, from Microsoft's Windows Mobile marketing
team. John Forsyth from Symbian said: "We take it seriously but we are the ones with
real phones, real phone platforms and a wealth of volume built up over years." However,
the current situation is not so unsophisticated. There is a huge flurry in the companies,
which are not in the list of OHA. For instance, Nokia, which is the largest handset
manufacturer in the world, nowadays owning some 39% market share, was one of the
companies snubbed on the invitation list to the 34-party Open Handset Alliance that is
growing daily. In contrast, Nokia is buying companies and dumping cash into
development, while Google is releasing an open platform hoping the applications and
services will build themselves with the help of a strong developer community,
development contests and large alliance of grand companies. Despite of this, Nokia is
ready to combat whatever Google has to throw with Google Android in 2008. Another
company Apple has already stroked the market with iPhone and its closed operating
system. Accordingly, iPhone in the US remains loyal to AT&T mobile carrier for five
years. That is plenty of time for Google to conquer the market with open Android.
Obvious advantage of Android is cost: while iPhone is priced at a weighty $400, Google
says it hopes to reach a more mainstream market by pricing Android-powered devices at
around $200. Microsoft, selling 21 millions copies of Windows Mobile software, stays
calm at this point, waiting for some particular results from Google Android.

This nice and healthy competition is just what the mobile industry needs at the moment,
at least for the consumers. The wars being waged between Google and the field will only
create better, cheaper handsets and more advanced applications.

 A first look at Google Android

Tomas Katysovas Page 25 1/19/2008

Mobile Future

Mobile Ads

Jaiku - an activity stream and sharing service that works from the Web and mobile
phones was bought by Google as important investment into the mobile advertisement.
People wondered why Google preferred the micro-blogging service to Twitter, which is
much more popular nowadays. The answer lies in Jaiku’s unique ability to combine
micro-blogging with user’s location. An integral part of the service is a Jaiku client
application for Symbian S60 platform mobile phones, which should come to Android
platform as well. The client uses location APIs within device to get the handset and the
users’ location based on nearby cellular network towers. Though the location is not very
precise, the mobile phone is able to broadcast it automatically. At that point the text can
be connected to users’ location and create a list of preferences for each place the user
frequently visits. Using such a technology, it is simple to track down a user via phone’s
IP address, whenever he comes into McDonald or is sitting in the airport.
Google is not a million miles away from being able to push advanced advertising to
individuals based on their profile, their location and their availability. They already offer
regional and local targeting for ads for desktop users, but this could be much more useful
for a mobile phone. And if the ads are truly relevant, interesting and unobtrusive, people
might actually start to like them.

 A first look at Google Android

Tomas Katysovas Page 26 1/19/2008

Mobile Services

Adding to its fast growing suite of mobile applications and services, Google has applied
for a patent for a mobile payments service that would allow users to make payments at
retail shops using their mobile phones. The Text Message Payment patent describes a
system where Google offers mobile focused payments called GPay. This describes a
system where a SMS message would be sent containing a payment amount and other
information. That payment amount would then be validated, debited from the user's
account, and communicated from server to server. Payment confirmation that had been
received would also simultaneously be sent to the relevant party, as illustrated in the
diagram below:

Patent Application Publication

 A first look at Google Android

Tomas Katysovas Page 27 1/19/2008

Described as "a computer-implemented method of effectuating an electronic on-line
payment," the system mentioned in the patent application is similar to existing mobile-
payment services. These services like mobile version of PayPal have been available for
some time but have had little success bursting with merchants and with customers. The
main difference between existing mobile payment systems and GPay is, of course, that
GPay is created by Google and will be easily adopted by Android Platform.

Conclusion

In summary, with all upcoming applications and mobile services Google Android is
stepping into the next level of Mobile Internet. Android participates in many of the
successful open source projects. That is, architect the solution for participation and the
developers will not only come but will play well together. This is notable contrast with
Apple and other companies, where such architecture of participation is clearly belated.
The first Android based official devices may well be launched sometime in the second
half of 2008. Obviously, that's an age away when it comes to handset design, and
Android may well find itself competing against the forthcoming Nokia touch screen
phones and maybe even the iPhone 2. Who knows?

 A first look at Google Android

Tomas Katysovas Page 28 1/19/2008

References

As the subject is quite new and there are no books and papers published yet, I wrote this
report based on the information I found on these web pages:

http://code.google.com/android/ - Google Android official webpage
http://www.openhandsetalliance.com/ - Open Handset Alliance webpage
http://en.wikipedia.org/wiki/Android_(mobile_phone_platform) – Wikipedia information
http://googleblog.blogspot.com/ - Official Google Blog
http://davanum.wordpress.com – Gtalk code example written by Davanum Srinivas

Moreover, I found the interesting topics on Google Android browsing Google Groups,
and, of course, using Google search by itself.

