

Making Mobile Phone with CE Linux

Feb. 23, 2006

Panasonic Mobile Communications Co., Ltd. Matsushita Electric Industrial Co., Ltd.

1

Mobile Phone Product Based on CE Linux

Panasonic has shipped mobile phone product based on CE Linux for the mainstream market since Feb. 2005.

■ CPU: ARM9

■ Base OS: MontaVista Linux CEE 3.1 (2.4.20 kernel, glibc-2.3)

■ GUI: X Window, GTK+(1.2.10) / Motif like toolkit

Kernel 2.4.x will be used for several more years.

> product quality assurance, migration cost

2005/6/13

Copyright © 2005-2006 by Panasonic Mobile Communications Co., Ltd. and Matsushita Electric Industrial Co., Ltd. All rights reserved

Technical Challenges

- Foot Print Size
 - no swap devices, strong cost pressure, feature richness. large footprint size of the OS (RTOS under 200kB, Linux over 2MB)
- Stability

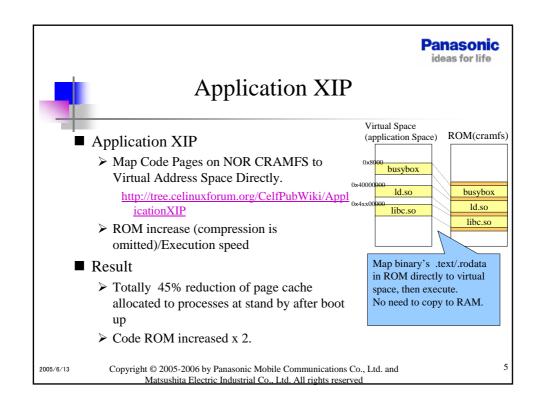
no Freeze, no crash...

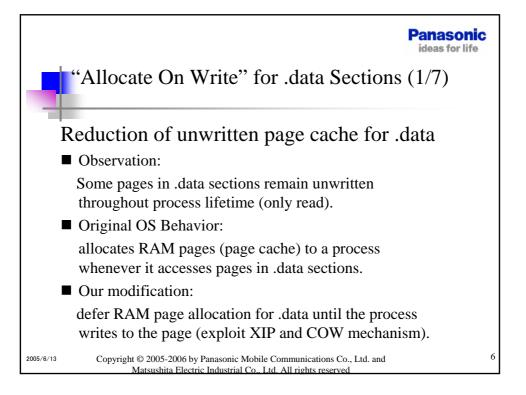
- Boot Time / UI Response Time quick response expected by customers.
- Realtime video phone, device control...
- Power Consumption long lasting, but small battery required

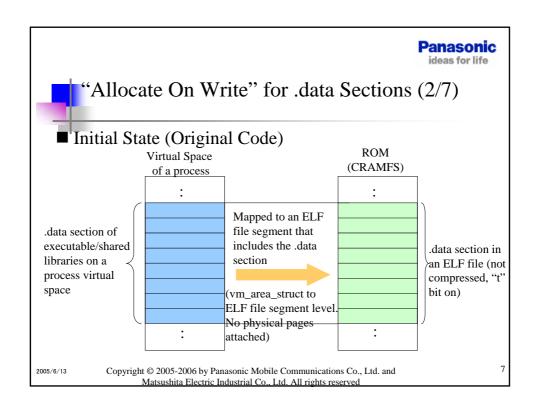
2005/6/13

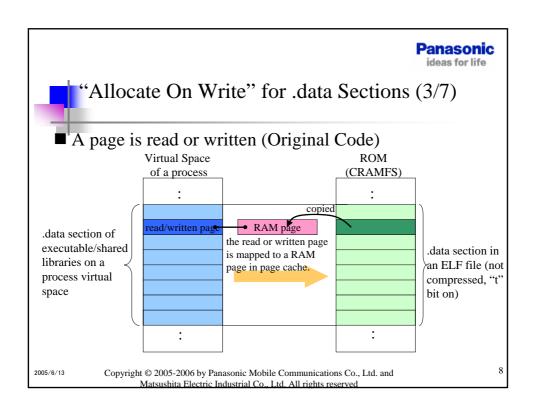
Copyright © 2005-2006 by Panasonic Mobile Communications Co., Ltd. and Matsushita Electric Industrial Co., Ltd. All rights reserved

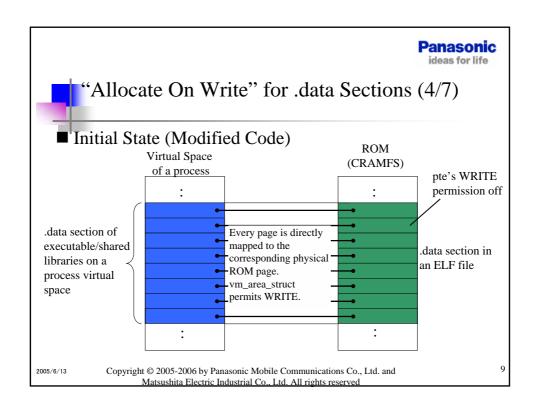
3

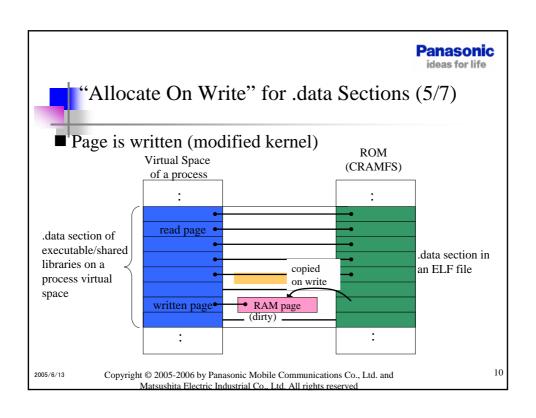

Reduction of the Foot Print Size


	ROM	RAM
"Allocate On Write" for .data Sections*		~
XIP (eXecute In Place)		~
Thumb® Instruction Set (Interworking)*	~	(V)


^{*} Development efforts done by Panasonic


2005/6/13


Copyright © 2005-2006 by Panasonic Mobile Communications Co., Ltd. and Matsushita Electric Industrial Co., Ltd. All rights reserved



Panasonic

ideas for life

"Allocate On Write" for .data Sections (6/7)

■ Changes of Code

No change in kernel code.

Subtle change to runtime dynamic linker (ld-linux.so):

ORIGINAL

mmap(..., PROT_READ | PROT_WRITE)
CHANGED

mmap(..., PROT_READ)

mprotect(..., PROT_READ | PROT_WRITE)

- > Drop PROT_WRITE bit when "mmap"ing ELF segment.
 - Kernel (CRAMFS) maps every pages in the .data section to ROM page as if it was XIP .text.
- ➤ Then, Set PROT_WRITE by mprotect.

vm_area_struct permits write.

Pte's write permission off.

--- Copy-on-Write enabled

2005/6/13

Copyright © 2005-2006 by Panasonic Mobile Communications Co., Ltd. and Matsushita Electric Industrial Co., Ltd. All rights reserved

1

Panasonic

ideas for lif

"Allocate On Write" for .data Sections (7/7)

■ Result

- ➤ Totally 26% reduction of page cache allocated to processes at stand by idle state.
- ➤ ROM access latency slows process execution (This effect was trivial for our product case.)

■ Issue

> get_user_pages() does not work for the .data.
Core dump, /proc/mem, ptrace and mlock may fail for pages in the .data section.

2005/6/13

Copyright © 2005-2006 by Panasonic Mobile Communications Co., Ltd. and Matsushita Electric Industrial Co., Ltd. All rights reserved

ROM Reduction by Thumb Instruction (1/2)

- Apply ARM Thumb mode to executables and shared libraries
- Linux kernel, glibc and most of standard libraries left to run in ARM mode.
- Average reduction rate of binary file size on ROM: 16%
- Totally 6% of Code ROM was reduced.
- No outstanding performance degradation at product level (4% slow down in average?).
- Thumb mode interworking with ARM mode did not work with available Linux/gcc at the time.

We fixed those problems with MontaVista.

2005/6/13

Copyright © 2005-2006 by Panasonic Mobile Communications Co., Ltd. and Matsushita Electric Industrial Co., Ltd. All rights reserved

1:

ROM Reduction by Thumb Instruction (2/2)

Major problems found and fixed:

- Compiler/Linker:
 - > Incomplete intermediate code fails to switch between thumb and ARM in certain conditions.
 - ➤ Wrong code can be generated for switch case when –fPIC specified.
- Kernel
 - ➤ Cannot recover alignment fault happened at thumb code.
 - Cannot handle invocations of signal handlers implemented in thumb mode.
- Others
 - > Prelink cannot handle symbol type specific to thumb.

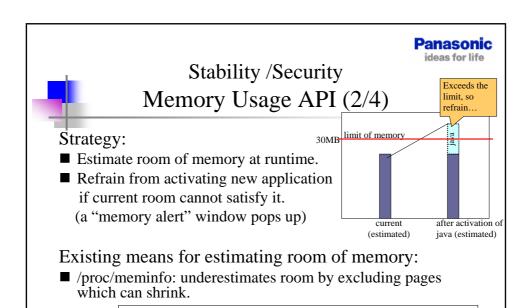
2005/6/13

Copyright © 2005-2006 by Panasonic Mobile Communications Co., Ltd. and Matsushita Electric Industrial Co., Ltd. All rights reserved

Stability /Security Memory Usage API (1/4)

Motivation:

- Customer requirements:
 - ➤ Consumer expects mobile phones to be more stable than PC.
- Dynamic characteristics
 - > Dynamic characteristics of memory usage introduced by Linux
 - > Difficulty to estimate maximum memory usage at design time
- Narrow margin:
 - amount of usual memory usage level is close to the limit of real capacity.


Mobile phone should not crash or freeze when it accidentally hit the limit of memory.

2005/6/13

2005/6/13

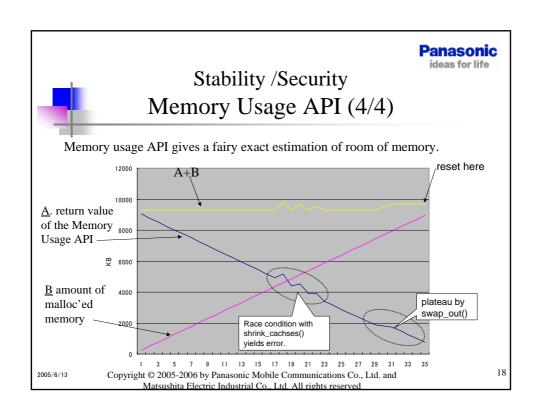
Copyright © 2005-2006 by Panasonic Mobile Communications Co., Ltd. and Matsushita Electric Industrial Co., Ltd. All rights reserved

15

implemented a *memory usage API* to estimate current

room of memory more exactly.

Copyright © 2005-2006 by Panasonic Mobile Communications Co., Ltd. and Matsushita Electric Industrial Co., Ltd. All rights reserved


Stability /Security Memory Usage API (3/4)

Memory usage API:

- Estimates amount of page cache and slabs to be reclaimed by shrink in addition to free pages.
- Execution time < 1msec
- Remained issue
 - Excludes i-node cache and directory entry cache to be reclaimed. (complexity, time consumption)
 - ➤ Race condition with shrink_caches() may cause inaccurate result.

2005/6/13

Copyright © 2005-2006 by Panasonic Mobile Communications Co., Ltd. and Matsushita Electric Industrial Co., Ltd. All rights reserved

ideas for life

User Response Time/Boot up time Application of prelink

■ Normal dynamic linked ELF: Over 2 sec. to start up a multimedia application process (fork ~ main)

Stages of Processing in Process Start up	elapsed time
1. Layout and map shared libs to virtual address space	96ms
2. Resolve symbol references	2354ms
3. Init of each ELF file	29ms

■ Prelink eliminates symbol reference resolution proceses.

2,479msec 125msec

■ Boot up time also reduced: Over 1min. 20sec.

2005/6/13

Copyright © 2005-2006 by Panasonic Mobile Communications Co., Ltd. and Matsushita Electric Industrial Co., Ltd. All rights reserved

19

Realtime

- Deadline of mobile phone's AV processing is ~20msec.
- Stable AV processing can be realized by running it as RT threads.
- Remove resource contention condition with TSS threads from realtime path to avoid priority inversion.

heap access, file access,

locking for resources shared with TSS, ...

2005/6/13

Copyright © 2005-2006 by Panasonic Mobile Communications Co., Ltd. and Matsushita Electric Industrial Co., Ltd. All rights reserved

Power Consumption Elimination of Tick Interrupt

- At stand by state, the system eliminates tick interrupt for saving power.
- CPU stops executing instruction and waits for interrupt in idle state.
 - ➤ Woken up once a minute by a timer interrupt for time adjustment
 - ➤ Woken up by other interrupts (e.g. key press, comm. events ..)
- When woken up, jiffies are recovered using external clock source.
- In calm environment, running time of CPU is reduced dramatically.

2005/6/13

Copyright © 2005-2006 by Panasonic Mobile Communications Co., Ltd. and Matsushita Electric Industrial Co., Ltd. All rights reserved

21

Panasonic

ideas for lif

Further Challenges Expected in Mobile Devices (1/2)

CE Linux works very well for mobile phones, while further improvements are also expected.

Very Specific Examples:

- Security
 - ➤ Application download OTA, installation of 3rd party software
 - > Strict access control, resource usage limit, isolation...
 - > Extensive improvement is needed for this area
- **■** IPC Performance
 - > \(\frac{1}{4} \) of startup time for a *typical* application program is consumed by select system call.
 - > Frequent message passing between threads in legacy application programs (inherited from RTOS based system).

2005/6/13

Copyright © 2005-2006 by Panasonic Mobile Communications Co., Ltd. and Matsushita Electric Industrial Co., Ltd. All rights reserved

Panasonic ideas for life

Further Challenges Expected in Mobile Devices (2/2)

- Priority Inversion
 - > RT video threads cannot share resources between TSS threads (e.g. heap).
- Smart Memory Management Algorithm for Limited Virtual Memory
 - ➤ No Swap No Virtually Unlimited Memory, Stability Requirement
 - ➤ Accurate means for current memory usage estimation
- Smaller (subset) configuration for mobile devices profile

. . .

continued...

2005/6/13

Copyright © 2005-2006 by Panasonic Mobile Communications Co., Ltd. and Matsushita Electric Industrial Co., Ltd. All rights reserved

23

Panasonic ideas for life

Security

- Motivation:
 - > Mobile Phone industry will become more horizontal.
 - Apps/drivers will be downloaded to be used in the near future.
 - > PC's "do it at your own risk" model will not always fit for mobile phones.
 - --- user's literacy for information systems, operator's business model
- Requirement:
 - ➤ Access or utilization of objects (resources in a system) can be restricted according to the trust of a subject (program instance).
 - "Objects" include CPU time, memories, files, programs and so on. $\,$
 - "Subjects" include application program and device drivers.
 - Degree of trust can be controlled securely (e.g. using some digitally signed information).

2005/6/13

Copyright © 2005-2006 by Panasonic Mobile Communications Co., Ltd. and Matsushita Electric Industrial Co., Ltd. All rights reserved

Stability

■ Motivation:

- Linux is stable enough, but sophistication for efficiency can bring system unstable because of dynamic nature.
 - e.g. Memory usage of Linux based systems is likely to become dynamic by dynamic process creation, lazy page allocation, heuristic over commit...

It makes memory usage so efficient but also brings a risk of memory overload (and "out of memory" crash) especially to mobile devices without (virtually unlimited) swap memory.

■ Requirement:

- Means for reservation and accurate runtime usage estimation of system resources.
- > Exception handling and recovery method for resource expiration.
- > Or some new robust programming model and the kernel support.

2005/6/13

Copyright © 2005-2006 by Panasonic Mobile Communications Co., Ltd. and Matsushita Electric Industrial Co., Ltd. All rights reserved

25

Scalability

Motivation:

- > Every segment (high-, mid-, low-tier) of product continues to evolve.
 - Software compatibility between wider segments is critical.
- > Even for high-tier, reduction of hardware utilization is preferable for energy efficiency.

■ Requirement:

- ➤ Scalability for computation performance
- Scalability for memory capacity
- Scalability for power consumption

(Of course upper bound is not problem at all, because Linux works well for clusters :-)

These requirements are applied not only to the kernel but also GUI systems.

2005/6/13

Copyright © 2005-2006 by Panasonic Mobile Communications Co., Ltd. and Matsushita Electric Industrial Co., Ltd. All rights reserved

Realtime

Issue

- Interrupt response time
- Priority inversion problem
- Other jitter cause

2005/6/13

Copyright © 2005-2006 by Panasonic Mobile Communications Co., Ltd. and Matsushita Electric Industrial Co., Ltd. All rights reserved

27

Realtime: Interrupt response time

- Interrupt response time for AV processing almost satisfied by current Linux.
 - ➤ Interrupt handler < 200usec
 - > RT thread < 3msec

(worst case in our system)

- Microprocessors get powerful enough to incorporate communication processing
 - Linux cannot satisfy this level of realtimeness.
 - ➤ Technique for co-existence with RTOS in a processor is expected

2005/6/13

Copyright © 2005-2006 by Panasonic Mobile Communications Co., Ltd. and Matsushita Electric Industrial Co., Ltd. All rights reserved

Realtime: Priority Inversion

- Elimination of Priority Inversion Problem
 - ➤ By introducing priority inheritance mechanism
 - ➤ Inheritance should work for user space mutex as well as kernel space mutex
 - ➤ Kernel 2.6 has been dramatically improved by Ingo Molnar

2005/6/13

Copyright © 2005-2006 by Panasonic Mobile Communications Co., Ltd. and Matsushita Electric Industrial Co., Ltd. All rights reserved