
2D Graphics in Android

www.kandroid.org

이경민 (snailee@gmail.com)

To enable libraries to do more, library should provide

new low-level capabilities that expose the possibilities

of the underlying platform as closely as possible.

Android Graphics & Rendering Pipeline

1. What 2D graphics must support?
a. Basic Terminology: 2D vs. 3D Graphics, Vector vs. Raster Graphics

b. Types of 2D Drawable: Texts, Geometries, Images

c. Types of 2D Effects: Path Effects, Mask Filters, Shaders, Color Filters, Transfer Modes

2. How Android supports 2D graphics?
a. Skia-era: CPU drawing + GPU compositing

i. Why Skia?

ii. Skia API

iii. Skia Rendering Pipeline

b. HWUI-era: GPU drawing & compositing
i. Why HWUI? Why not Skia’s GPU backend?

ii. Display List, Display List Property, Render Thread

3. How Android renders texts?
a. Challenges: Layout and Rasterization

b. Android Text Rendering: HWUI, Skia, and Freetype (Harfbuzz)

c. Text Rendering Performance Optimization
i. Caching Architecture

ii. Pre-Caching

iii. Batch and Merging

iv. Font Rasterization on GPU

Contents

Basic Terminology

● 2D computer graphics is the computer-based generation of digital images—mostly

from two-dimensional models (such as 2D geometric models, text, and digital

images) and by techniques specific to them.

● 3D computer graphics (in contrast to 2D computer graphics) are graphics that use a

three-dimensional representation of geometric data (often Cartesian) that is stored in

the computer for the purposes of performing calculations and rendering 2D images.

● 3D computer graphics rely on many of the same algorithms as 2D computer vector

graphics in the wire-frame model and 2D computer raster graphics in the final rendered

display.

● Vector graphics is the use of geometrical primitives such as points, lines, curves,

and shapes or polygons—all of which are based on mathematical expressions—to

represent images in computer graphics. Vector graphics are based on vectors (also called

paths), which lead through locations called control points or nodes.

● A raster graphics image is a dot matrix data structure representing a generally

rectangular grid of pixels, or points of color, viewable via a monitor, paper, or other display

medium.
From Wikipedia

Source: http://austinvisuals.com/wp-

content/uploads/2013/03/mario2d3d.jpg
Source: http://zyanger.blogspot.kr/2010/09/week-6-

clear-raster-vs-vector-graphics.html

What 2D graphics must support?

● Types of 2D Drawable: Texts, Geometries, Images

● Types of 2D Effects: Path Effects, Mask Filters, Shaders, Color Filters,

Transfer(or Blend) Modes

Vector Raster

Text Geometry Image

PathEffect
Mask

Filter
Shader

Color

Filter

Transfer

Mode

Rasterization

“Image filtering modify the pixels in an image based on some function of a local neighborhood of the pixels.”
From http://alumni.media.mit.edu/~maov/classes/vision09/lect/09_Image_Filtering_Edge_Detection_09.pdf

Source: http://lodev.org/cgtutor/filtering.html

1. What 2D graphics must support?
a. Basic Terminology: 2D vs. 3D Graphics, Vector vs. Raster Graphics

b. Types of 2D Drawable: Texts, Geometries, Images

c. Types of 2D Effects: Path Effects, Mask Filters, Shaders, Color Filters, Transfer Modes

2. How Android supports 2D graphics?
a. Skia-era: CPU drawing + GPU compositing

i. Why Skia?

ii. Skia API

iii. Skia Rendering Pipeline

b. HWUI-era: GPU drawing & compositing
i. Why HWUI? Why not Skia’s GPU backend?

ii. Display List, Display List Property, Render Thread

3. How Android renders texts?
a. Challenges: Layout and Rasterization

b. Android Text Rendering: HWUI, Skia, and Freetype (Harfbuzz)

c. Text Rendering Performance Optimization
i. Caching Architecture

ii. Pre-Caching

iii. Batch and Merging

iv. Font Rasterization on GPU

Contents

How Android supports 2D graphics?

Skia-era HWUI-era

Source: “Skia and Freetype - Android 2D Graphics Essentials” at 10th Kandroid Conference (2012)

Skia-era: Why Skia?

Skia is the open source 2D graphics library used by Chrome, Chrome OS, Firefox, Firefox OS,

Android, and other products. We strive to provide a single set of APIs for accurate, high

performance rendering across a variety of hardware and software platforms.

Source: https://docs.google.com/document/d/1Q4-YN8wDY9Q3L7gkqOJmmCLM73dj3tr9epUHL1vMZm4/

Performance

Correctness

Portability

Light-weight (?)

Skia

?
Next Skia

Source: “Skia Update” at BlinkOn 3 (2014)

https://www.youtube.com/watch?v=SU58JHK0-3o

Skia-era: Skia API

● SkCanvas: main drawing API (drawRect, drawText, drawLine, drawPath, etc)

● SkPaint: encapsulates styling of draw calls (color, path style, blending mode, font, etc)

● SkDevice: abstracts the backend (SkBitmapDevice, SkGpuDevice, SkPDFDevice, etc)

● SkPicture, SkPicturePlayback: records and replays draw operations

Source: “Skia and Freetype - Android 2D Graphics Essentials” at 10th Kandroid Conference (2012)

Skia-era: Skia Rendering Pipeline

2 3

4
1

Source: “Skia and Freetype - Android 2D Graphics Essentials” at 10th Kandroid Conference (2012)

HWUI-era: Why not Skia’s GPU backend?

depends

Add gpu backend (2010/12)

Add libhwui (2010/06)

Source: “Skia and Freetype - Android 2D Graphics Essentials” at 10th Kandroid Conference (2012)

HWUI-era: Display List

Record

Replay

Source: “Skia and Freetype - Android 2D Graphics Essentials” at 10th Kandroid Conference (2012)

HWUI-era: Display List Properties => Render Properties

class RenderProperties

struct PrimitiveFields {

Outline mOutline;

RevealClip mRevealClip;

int mClippingFlags;

bool mProjectBackwards;

bool mProjectionReceiver;

float mAlpha;

bool mHasOverlappingRendering;

float mElevation;

float mTranslationX, mTranslationY, mTranslationZ;

float mRotation, mRotationX, mRotationY;

float mScaleX, mScaleY;

float mPivotX, mPivotY;

int mLeft, mTop, mRight, mBottom;

int mWidth, mHeight;

bool mPivotExplicitlySet;

bool mMatrixOrPivotDirty;

Rect mClipBounds;

} mPrimitiveFields;

SkMatrix* mStaticMatrix;

SkMatrix* mAnimationMatrix;

LayerProperties mLayerProperties;

class LayerProperties

LayerType mType;

bool mOpaque;

uint8_t mAlpha;

SkXfermode::Mode mMode;

SkColorFilter* mColorFilter;

Source: “Skia and Freetype - Android 2D Graphics Essentials”

at 10th Kandroid Conference (2012)

HWUI-era: DisplayListOp

Support custom drawing callback

(used by Chromium-powered WebView)

frameworks\base\libs\hwui\DisplayListRenderer.h
virtual status_t drawRoundRect(float left, float top, float right, float bottom,

float rx, float ry, const SkPaint* paint);

virtual status_t drawRoundRect(CanvasPropertyPrimitive* left, CanvasPropertyPrimitive* top,

CanvasPropertyPrimitive* right, CanvasPropertyPrimitive* bottom,

CanvasPropertyPrimitive* rx, CanvasPropertyPrimitive* ry,

CanvasPropertyPaint* paint);

virtual status_t drawCircle(float x, float y, float radius, const SkPaint* paint);

virtual status_t drawCircle(CanvasPropertyPrimitive* x, CanvasPropertyPrimitive* y,

CanvasPropertyPrimitive* radius, CanvasPropertyPaint* paint);

Added for RippleAnimation

class DrawFunctorOp : public DrawOp {

public:

virtual status_t applyDraw(OpenGLRenderer& renderer,

Rect& dirty) {

renderer.startMark("GL functor");

status_t ret = renderer.callDrawGLFunction(mFunctor, dirty);

renderer.endMark();

return ret;

}

private:

Functor* mFunctor;

};

HWUI-era: UI and Render Thread

Source: “RE-view of Android L Developer PRE-view”, DEVIEW2014

HWUI-era: UI and Render Thread

Source: “RE-view of Android L Developer PRE-view” at DEVIEW2014

HWUI-era: Sync Between UI and Render Thread

Reference: http://blog.csdn.net/jinzhuojun/article/details/44062175

UI (Main)

Thread

Render

Thread

AutoMutex _lock(mLock);

mRenderThread->queue(this);

mSignal.wait(mLock);

canUnblockUiThread = syncFrameState(info);

if (canUnblockUiThread) {

unblockUiThread();

}

if (CC_LIKELY(canDrawThisFrame)) {

context->draw();

}

if (!canUnblockUiThread) {

unblockUiThread();

}

AutoMutex _lock(mLock);

mSignal.signal();

updateRootDisplayList(...);

nSyncAndDrawFrame(...);

1. What 2D graphics must support?
a. Basic Terminology: 2D vs. 3D Graphics, Vector vs. Raster Graphics

b. Types of 2D Drawable: Texts, Geometries, Images

c. Types of 2D Effects: Path Effects, Mask Filters, Shaders, Color Filters, Transfer Modes

2. How Android supports 2D graphics?
a. Skia-era: CPU drawing + GPU compositing

i. Why Skia?

ii. Skia API

iii. Skia Rendering Pipeline

b. HWUI-era: GPU drawing & compositing
i. Why HWUI? Why not Skia’s GPU backend?

ii. Display List, Display List Property, Render Thread

3. How Android renders texts?
a. Challenges: Layout and Rasterization

b. Android Text Rendering: HWUI, Skia, and Freetype (Harfbuzz)

c. Text Rendering Performance Optimization
i. Caching Architecture

ii. Pre-Caching

iii. Batch and Merging

iv. Font Rasterization on GPU

Contents

Challenges: Layout and Rasterization

Source: http://wiki.starling-framework.org/extensions/tlfsprite

Source: “Skia and Freetype - Android 2D Graphics Essentials”

at 10th Kandroid Conference (2012)

Layout

Rasterization

Android Text Rendering

Reference: Android’s Font Renderer - Efficient text rendering with OpenGL ES

https://medium.com/@romainguy/androids-font-renderer-c368bbde87d9

Android software text rendering (Up until Android 3.0)

Android hardware-accelerated text rendering (As of Android 4.4)

● android.widget.TextView, a View that handles layout and rendering

● android.text.*, a collection of classes to create stylized text and layouts

● android.graphics.Paint, to measure text

● android.graphics.Canvas, to render text

FreeType

Harfbuzz

measure

render

Performance Optimization: Caching Architecture

1024x512 alpha cache

2048x256 alpha cache

2048x256 alpha cache

2048x512 alpha cache

1024x512 RGBA cache

2048x256 RGBA cache

In realtime computer graphics, a texture atlas is a large image

containing a collection, or "atlas", of sub-images, each of which is a

texture for some part of a 2D or 3D object.
From http://en.wikipedia.org/wiki/Texture_atlas

DefaultKeyedVector<glyph_t, CachedGlyphInfo*> mCachedGlyphs

LruCache<Font::FontDescription, Font*> mActiveFonts

Vector<CacheTexture*> mACacheTextures;

Vector<CacheTexture*> mRGBACacheTextures;

Performance Optimization: Pre-Caching

● To completely avoid, or at least minimize, the number of texture uploads mid-frame
o Texture uploads are expensive operations that can stall the CPU and/or the GPU.

o Even worse, modifying a texture during a frame can create severe memory pressure on

some GPU architectures.

Font Cache

Performance Optimization: Batching & Merging

Source: “Android Graphics Performance” at Google I/O 2013

https://www.youtube.com/watch?v=vQZFaec9NpA

Re-ordering

Merging
C

C c na

le

Texture A Texture B

C c

an elc

an el

4 draw calls & texture binds

2 draw calls & texture binds

● Buffers text geometry across multiple draw calls.

● Reduces the number of commands issued to the

OpenGL driver.

Performance Optimization: Font Rasterization on GPU

Source: https://developer.nvidia.com/nv-path-rendering

Source: https://code.google.com/p/glyphy/

Source: http://www.ronaldperry.org/SaffronWebPage

SDF: Signed Distance Field

ADF: Adaptively Sampled Distance Field

