
How to build a SoC like iPhone (v0.3) 

- 1 - 

 
 

Architecture design of a SoC 
 
 
 

How to build a SoC 
like iPhone 

 
 
 
 

Tell you the secret of iPhone 
and its pros and cons 

 
Teach you how to build 
your own SoC solution 

 
 

Kenny Liu  



How to build a SoC like iPhone (v0.3) 

- 2 - 

Preface 
 

I, Kenny, is the chief system architect in a SoC LLC for many years. 
When I am in that company, I am in charge of design the whole 
system including chip, hardware and software. I have finished 
many successful SoC architecture designs. In the working days, I 
found that almost nobody knew the whole system even in a SoC 
company. Every member and every department only focused on 
only a part of the whole system. When we are facing a problem, we 

always have to think it in a system point, it’s the value of system architect. 
 
In order to “make the world more plat”, I want to teach more people and more 
companies how to design a SoC. 
 
We use the following measures to write this document: 
z Data collection, such as training document, specification, datasheet, articles, 

thesis. 
z Solution crack, analyze the target solution’s architecture, performance, 

technologies, etc. 
z Prototype building, such as implement a test system, do some demo, test the 

performance, etc. 
z Report writing. Including background knowledge, information source, system 

architecture, key technology, test report, sample code, etc. 
 
I hope you can get the following benefits from this document: 
z Improve technical capacity. Thus they can do what they don’t know how to do 

it before.  
z Lower technical risk. From our report, they will get a technical prototype, thus 

there will be low technical risk for them because we have verified it for them. 
z Shorten developing duration. From our report, they will get a system design, 

thus they can just use it as a reference design and give some customization. 
z Get more confidence. Once they know how their rivals developed a system, 

they will become more confident with their own system. 
z Low the developing cost. Wrong direction, failed project will cost a lot of money. 

Using a verified prototype, it will save a lot of money. 
We have paid so much effort to write this document, but now, you can get it via 
Internet. I hope it will be helpful for you. 
 
Contact: MSN: liujianjun88@hotmail.com . You can get 
latest version from 
 http://www.itconsult2000.com/product/SoC-iPhone.pdf . 



How to build a SoC like iPhone (v0.3) 

- 3 - 

Content 
1 What’s iPhone.......................................................................................................................7 

1.1 Technology of iPhone..........................................................................................7 
1.1.1 Hardware features.......................................................................................7 
1.1.2 PCB layout .....................................................................................................8 
1.1.3 Software features.......................................................................................10 
1.1.4 UI features ...................................................................................................10 

1.2 Strategy ................................................................................................................10 
1.2.1 Market strategy ..........................................................................................11 
1.2.2 Development strategy...............................................................................11 
1.2.3 Communities...............................................................................................12 

1.3 Summary..............................................................................................................13 
1.3.1 Cost and profit ...........................................................................................13 
1.3.2 Pros and cons .............................................................................................14 

2 Architecture design...........................................................................................................16 
2.1 User cases analysis...........................................................................................16 
2.2 Requirement definition ....................................................................................16 
2.3 Comparation of popular architectures .......................................................16 

2.3.1 RF transceiver ............................................................................................16 
2.3.2 Baseband chip............................................................................................17 
2.3.3 Desttop frameworks and OS..................................................................18 

2.4 Our architecture strategy ...............................................................................21 
2.4.1 Splitting telecommunication features.................................................21 
2.4.2 Splitting multimedia features................................................................24 

3 Chip design .........................................................................................................................25 
3.1 Telecommunication subsystem ....................................................................25 
3.2 Multimedia subsystem ....................................................................................25 
3.3 Application subsystem ....................................................................................25 
3.4 Bandwidth analysis ..........................................................................................25 

3.4.1 Streamed Video ..........................................................................................25 
3.4.2 VoIP................................................................................................................25 
3.4.3 Video recording ..........................................................................................25 

3.5 Power consumption analysis .........................................................................25 
3.5.1 Idle state.......................................................................................................25 
3.5.2 Multimedia state ........................................................................................25 
3.5.3 Talking state ...............................................................................................26 

4 PCB design ..........................................................................................................................27 
4.1 Goal........................................................................................................................27 

4.1.1 Low cost........................................................................................................27 
4.1.2 Easy to manufacture ................................................................................27 
4.1.3 Easy to debug .............................................................................................27 

4.2 Pinout definition ................................................................................................27 
4.3 Layout design .....................................................................................................27 



How to build a SoC like iPhone (v0.3) 

- 4 - 

4.3.1 RF block .......................................................................................................28 
4.3.2 Baseband block..........................................................................................28 
4.3.3 Audio block..................................................................................................28 
4.3.4 Peripherals block .......................................................................................28 

5 Software design..................................................................................................................29 
5.1 Telecommunication subsystem ....................................................................29 

5.1.1 Data plane ...................................................................................................29 
5.1.2 Signal plane.................................................................................................29 
5.1.3 Modem system software ..........................................................................31 
5.1.4 Footprint analysis .....................................................................................31 

5.2 Multimedia subsystem ....................................................................................31 
5.2.1 Accelerator drivers ....................................................................................31 
5.2.2 Equalizer drivers........................................................................................31 
5.2.3 Camera drivers ...........................................................................................31 

5.3 Application subsystem ....................................................................................31 
5.3.1 Boot code in ROM......................................................................................31 
5.3.2 Linux OS in FLASH...................................................................................31 
5.3.3 Input drivers ...............................................................................................32 
5.3.4 Desktop frameworks.................................................................................33 

5.4 Boot sequence ....................................................................................................33 
6 Service design.....................................................................................................................34 

6.1 Phone services ....................................................................................................34 
6.1.1 Calls ...............................................................................................................34 
6.1.2 SMS/EMS/MMS ........................................................................................34 
6.1.3 Phone books ................................................................................................34 
6.1.4 Fax..................................................................................................................34 

6.2 Connection services..........................................................................................34 
6.2.1 WLAN.............................................................................................................34 
6.2.2 Bluetooth......................................................................................................34 

6.3 Hot internet services ........................................................................................34 
6.3.1 Browser.........................................................................................................34 
6.3.2 e-Mail.............................................................................................................34 
6.3.3 YouTube .......................................................................................................35 
6.3.4 GoogleMap ...................................................................................................35 
6.3.5 Yahoo finance .............................................................................................35 
6.3.6 Instant messager .......................................................................................35 
6.3.7 SIP ..................................................................................................................35 

6.4 Internet multimedia..........................................................................................35 
6.4.1 Music .............................................................................................................35 
6.4.2 Video ..............................................................................................................35 
6.4.3 Radio..............................................................................................................35 
6.4.4 TV ...................................................................................................................35 

6.5 Games ...................................................................................................................35 
6.5.1 Simulators ...................................................................................................35 



How to build a SoC like iPhone (v0.3) 

- 5 - 

6.6 PC services...........................................................................................................36 
6.6.1 Programming language............................................................................36 
6.6.2 Command interface ..................................................................................36 
6.6.3 Office..............................................................................................................36 

6.7 SIM service ..........................................................................................................36 
7 Tools design ........................................................................................................................37 

7.1 Developing tools .................................................................................................37 
7.1.1 Compilation tools ......................................................................................37 
7.1.2 Debug tools..................................................................................................37 
7.1.3 Simulation tools .........................................................................................39 

7.2 Analysis tools......................................................................................................39 
7.3 Manufacture tools .............................................................................................39 

8 Manufacture design..........................................................................................................40 
8.1 Manufacture flow...............................................................................................40 
8.2 Software downloading ......................................................................................40 
8.3 Calibration ...........................................................................................................40 
8.4 Factory Settings .................................................................................................40 
8.5 Resource downloading .....................................................................................40 

9 More than iPhone ..............................................................................................................41 
9.1 Goal........................................................................................................................41 
9.2 Less power consumption ................................................................................41 
9.3 GPS ........................................................................................................................41 
9.4 Online game ........................................................................................................41 

10 ROI analysis ................................................................................................................42 
10.1 Cost analysis.......................................................................................................42 

10.1.1 Chip cost ..............................................................................................42 
10.1.2 PCB cost ...............................................................................................42 
10.1.3 Software cost.......................................................................................42 
10.1.4 Developing cost ..................................................................................42 
10.1.5 Summary..............................................................................................42 

10.2 Return analysis ..................................................................................................42 
10.3 Conclusion...........................................................................................................42 

11 More reference............................................................................................................43 
11.1 Related media .....................................................................................................43 
11.2 Related documents ...........................................................................................43 

11.2.1 Chip design..........................................................................................43 
11.2.2 Software design ..................................................................................43 
11.2.3 Tools design.........................................................................................43 

11.3 Related prototype packages ...........................................................................43 
11.3.1 Multi-touch package.........................................................................43 
11.3.2 Fax package ........................................................................................44 

11.4 More services ......................................................................................................44 
11.5 Contact with author .........................................................................................44 

 



How to build a SoC like iPhone (v0.3) 

- 6 - 

Tables and figures 

Specification of iPhone ......................................................................................................7 
Up side of iPhone PCB .......................................................................................................8 
Down side of iPhone PCB .................................................................................................9 
iPhone’s Market strategy ................................................................................................11 
Value chain of iPhone ......................................................................................................12 
Hardware cost of iPhone .................................................................................................14 
OWA Multi-band Transceiver Multi-band Transceiver .........................................16 
Chip architecture of Texas Instruments ....................................................................17 
Software architecture of Android .................................................................................18 
Software architecture of Windows mobile .................................................................20 
Software architecture of Qtopia....................................................................................21 
Hardware / Software Split .............................................................................................21 
Sample PCB of GSM/GPRS ...........................................................................................27 
Architecture for 3G protocol stack ..............................................................................30 
A simplified view of Apple iPhone’s projected-capacitive touch screen. ..........32 
Debug tool of ARM ............................................................................................................38 
Manufacture flow of MTK ...............................................................................................40 

 



How to build a SoC like iPhone (v0.3) 

- 7 - 

 

1 What’s iPhone 
On January 9, 2007, Apple CEO Steve Jobs took the stage at the Macworld Expo 
in San Francisco to pre-announce a new mobile phone, the Apple iPhone. He was 
characteristically enthusiastic about its prospects. "We're going to make some 
history together," he said. "Today Apple is going to reinvent the phone." (Jobs, 
2007) 
Even though it had not yet been released, the iPhone quickly became one of the 
most discussed new technology products, outstripping the coverage of other very 
prominent mobile phone products that have been shipping for years. A search for 
the term "iPhone" on Google returns about 53 million hits. For comparison, "Razr" 
(Motorola's iconic slim phone) returns 23 million hits, and "Treo" (Palm's 
smartphone) returns about 30 million. 
 

1.1 Technology of iPhone 
IPhone used the following technologies. 

1.1.1 Hardware features 
The iPhone is a "candybar" style device (ie, without flip cover or slider). The front of 
the device is dominated by a touch-sensitive 320x480 screen, and it does not have 
a physical keypad. It weighs 135 grams: heavy for a simple “feature” phone (which 
tend to range from 80g to 120g), but light for a “smart” phone (which range from 
110g to more than 200g). Hardware features include a quad-band GSM/Edge 
cellular radio (without 3G), WiFi (802.11 b and g), Bluetooth 2.0, and a two 
megapixel camera. 
 

 
Specification of iPhone 

 



How to build a SoC like iPhone (v0.3) 

- 8 - 

The iPhone's hardware features and configuration are comparable to those of 
other "smartphones" already on the market. For example, the HTC 3600 has a 
form factor and weight similar to the iPhone. The HTC device lacks 802.11g and 
has a lowerresolution screen, but has a UMTS (3G) radio, a memory card slot, and 
two built-in cameras. 
 

1.1.2 PCB layout 
This is PCB layout of iPhone. 

 
Up side of iPhone PCB 

 
Maker 
(Brand) 

Function Mark Dimension(mm) Notes 

Infineon Baseband IC 337S3235 

G0704 

10x10x1 BGA 

Intel Flash Memory 

(32MB+16MB) 

1030W0YTQ2 8x10x1 BGA 

Infineon Power Management IC 338S0289 

G0716 

6.5x6.5x0.8 QFJ 

Skyworks Power Amp Module

（GSM/EDGE） 

SKY77340-13 6x8x1 SOJ 

Epcos 

(Infineon) 

RF Transceiver+FEM 338S0297 

G0717 

6x9x1 BGA 

Hosonic Occilator（26MHz）for B-T  26.000 723 2x2.5x0.55 Can type 

N/A Band Pass Filter N/A 2x2.5x1 LTCC 

N/A N/A 2150717 2x2x0.8 QFJ 

N/A Power Amp Module

（2.4GHz） 

B8 BA6N 2x2x0.8 QFJ 



How to build a SoC like iPhone (v0.3) 

- 9 - 

Marvell W-LAN Chip W8686B13 4x5x0.5 WL-CSP 

CSR Bluetooth Chip 41B14 4x4.5x0.5 WL-CSP 

Hosonic Occilator(40MHz) for W-LAN 40.000 723 2x2.5x0.55 Can type 

 

 

Down side of iPhone PCB 
 
Maker 
(Brand) 

Function Mark Dimension(mm) Notes 

APPLE 

(Samsung) 

Application Processor 339S0030 

ARM 

14x14x1.0 BGA 

Linear 

Technology 

USB Power Manager & 

Battery Charger 

4066 N3016 4x4x0.75 QFJ 

APPLE 

(Broadcom) 

I/O Controller 338S0459 

P2TFY 

8x8x0.8 QFJ 

Samsung Nand Flash Memory(4GB) K9HBG08U1

M 

18.5x12x1.0 SOP 

National 

Semiconduct

or 

Display Interface Serializer M73RF LM25 

12SM 

4x4x0.8 BGA 

ST 

Microelectron

ics 

３D Accelerator asensor 713 302D 3x5x0.9 MEMS, 

SON-14,

LGA 

Hosonic Occilator (24MHｚ)For MP3  24.000 873 2x2.5x0.55 Can 

Sealed 

type 

Hosonic Occilator (27MHｚ)  27.000 719 2x2.5x0.55 Can 

Sealed 



How to build a SoC like iPhone (v0.3) 

- 10 - 

type 

Epson-Toyoc

om 

Occilator (32KHz) for Timer A710Y 3.2x1.5x0.55  

Wolfson Stereo audio CODEC WM8758BG 10x10x0.8 QFJ 

 

1.1.3 Software features 
The iPhone incorporates a version of Apple's MacOS X with its Safari web browser. 
Depending on how the browser is implemented, this is potentially a differentiator 
for Apple as most mobile browsers can display only a subset of the web content 
available on PCs. However, the iPhone is not planned to include Java or Flash 
support, limiting its ability to display some websites. The iPhone also includes 
Yahoo email support, Google Maps and associated location-based services, iPod 
music and video playback, a suite of phone apps (address book, threaded SMS, 
calendar, dialer, visual voicemail [pick messages from a printed list on screen]), 
photo management software, and some widgets provided by Apple. The visual 
voicemail product appears to be unique, and of course iTunes is not offered for 
other companies' devices (other than a few Motorola mobile phones). Yahoo e-mail 
and Google Maps are available for other mobile devices. 
 

1.1.4 UI features 
Apple made a distinctive departure from the industry norm in this area. Unlike 
other touchscreen smartphones, the device has no stylus, and is designed to be 
entirely finger-driven. The interface can sense multiple simultaneous finger 
presses, enabling the user to manipulate the interface via gestures (something 
that Apple says it is patenting). For example, pinching the fingers together is used 
to reduce the magnification on a web page. This sort of "multi-touch" interface has 
been discussed in the past, but Apple is one of the first companies to implement it 
in a commercial product. It won't be possible to judge the success of Apple's 
approach until the iPhone ships. 
 
As is typical of many Apple products, the iPhone's interface also includes some 
minor features uncommon in most competing products and designed to spotlight 
the company's attention to detail. One is a proximity sensor that turns off the 
touchscreen when the device is close to the user's face (so incidental contact with 
the user's ear won't activate functions of the phone). Another is the use of position 
sensors to rotate the screen's image appropriately when the device is turned 
sideways. 
 

1.2 Strategy 
IPhone used many new strategy for its success. 
 



How to build a SoC like iPhone (v0.3) 

- 11 - 

1.2.1 Market strategy 
Intended for style-conscious cell phone consumers who would like to browse the 
Internet and enjoy entertainment to-go, the iPhone is a smart phone that 
combines a web browser, email, iPod and personal computer into a single, 
fashionable, easy-to-use device. 
 
The following strategy canvas illustrates how the iPhone is differentiated from the 
BlackBerry Pearl (a smart phone) and Motorola’s RAZR (a popular, stylish 
consumer phone) 
 

iPhone differentiation

0

2

4

6

8

10

Affo
rda

ble

Eas
y o

f u
se

Fas
hio

na
ble

Email

Web b
row

sin
g

Med
ia 

Play
er

Carrie
r a

va
ila

bility

Scre
en

PC fu
nc

tio
na

lity

Factors of Competition

Sc
or

e 
(1

0 
= 

hi
gh

es
t)

iPhone

Blackberry
Pearl
Motorola
RAZR

 

iPhone’s Market strategy 
 
There have been over 100 million iPods sold. In 2006, the following amounts of 
systems were sold: 

System Number sold 
Game Consoles 26 M 
Digital Cameras 94 M 
Mp3 Players 135 M with iPod having 80% market share 
PCs 209 M 
Mobile Phones 957 M 

 
Apple’s goal is to achieve 1% market share which is 10 M phones by 2008.  They 
are going after the world market. 
 

1.2.2 Development strategy 
The value chain below illustrates the context in which Apple delivers value to the 



How to build a SoC like iPhone (v0.3) 

- 12 - 

customer with the iPhone: 

 

 

 

Value chain of iPhone 
 
 

1.2.3 Communities 
Make communities as partners. 
 

1.2.3.1 Conceitedsoftware.com 
Provice free software application. 

1.2.3.2 Modmyifone.com 
Provice free software application. 

1.2.3.3 Iphone.freecoder.org 
Provice free software application. 

Components Desig Build OS / UI App Branding Marketing UserBillingNetwork

Primarily Outsourced 

Primarily Apple 



How to build a SoC like iPhone (v0.3) 

- 13 - 

 

1.3 Summary 
 

1.3.1 Cost and profit 

1.3.1.1 Cost 
Quantity: 10 M Sets/Year 

Unit: US cent 
Name Producer Size (mm) Description Count Price Total 
Baseband IC Infineon 10x10x1  1 1,200 1,200 

Flash 

Memory 

Intel 8x10x1 32MB+16MB 1 1,500 1,500 

Power 

Management 

IC 

Infineon 6.5x6.5x0.8  1 300 300 

Power Amp 

Module 
Skyworks 6x8x1 GSM/EDGE 1 150 150 

RF 

Transceiver＋

FEM 

EPCOS(Infineon) 6x9x1 GSM/EDGE 1 500 500 

  2x2x0.8 SP4T 1 150 150 

Power Amp 

Module 

 2x2x0.8 2.4GHz 1 130 130 

Application 

Processor 

Apple(Samsung) 14x14x1.0  1 1,600 1,600 

USB Power 

Manager & 

Battery 

Charger 

Linear 

Technology 

4x4x0.75  1 300 300 

I/O APPLE

（Broadcom） 

8x8x0.8  1 200 200 

Nand Flash 

Memory 

Samsung 18.5x12x1.0 4GB 1 2,800 2,800 

Display 

Interface IC 

National 

Semiconduct 

4x4x0.8  1 300 300 

Audio Codec Wolfson 10x10x0.8  1 100 100 

Flash 

Memory 

SST 5x6x0.5 8Mb(512Kx16) 1 250 250 

Other IC    11 80 880 

Others    30 10 300 

IC total 10,660 



How to build a SoC like iPhone (v0.3) 

- 14 - 

LCD Sharp, TMD, 

Epson 

3.5inch TFT(480x320) 1 2,400 2,400 

Back light Balda 3.5inch  1 1,500 1,500 

Display 3,900 

W-LAN IC Marvell 4x5x0.5 WL-CSP 1 700 700 

Bluetooth IC CSR 4x4.5x0.5 WL-CSP 1 250 250 

RF 1,175 

Resistance, etc. 187 

Sensor 2,000 

Board 820 

Total 19,708 

Hardware cost of iPhone 

 
Thus the total hardware cost for iPhone (4GB) is US$197. 
 

1.3.1.2 Profit 
Pricing: 
Model Price 
4gb model 499 
8gb model 599 
 
Availability: 
Ship Date Ship Date 
United States June 2007 
Europe December 2007 
Asia 2008 
 

1.3.2 Pros and cons 
Some notable features available in many other smartphones are missing from the 
iPhone, including: 
• A physical QWERTY keyboard such as that found in the Palm Treo and RIM 
Blackberry devices. Instead, there is a virtual keyboard on the touchscreen. Apple 
claims this is an advantage because mobile device keyboards have such small 
keys that they are hard to use. 
• The ability to install third party applications. At release Apple said the iPhone 
will be a closed device -- only Apple will be able to offer new applications for it. 
• The ability to read and edit Microsoft office documents, which is important to 
business users who often receive them as e-mail attachments. 
• A user-replaceable battery. Like the iPod family but unlike most mobile phones, 
the iPhone's battery cannot be replaced by the user. While this allows Apple to 
make the device thinner because the battery does not require a separate housing, 
the user can't carry a backup battery, and when the battery wears out the device 



How to build a SoC like iPhone (v0.3) 

- 15 - 

must be returned for service. Palm Computing tried a similar approach with its 
early smartphones, but gave up due to customer complaints. 



How to build a SoC like iPhone (v0.3) 

- 16 - 

 

2 Architecture design 
2.1 User cases analysis 
Use UML as modelling tools. 
 

2.2 Requirement definition 
What our product definition here. Just some like iPhone. 

2.3 Comparation of popular architectures 
Compare some popular solutions here. 

2.3.1 RF transceiver 
We focus on new solutions. 

2.3.1.1 OWA Multi-band Transceiver 

 
OWA Multi-band Transceiver Multi-band Transceiver 

Features of this architecture is: 
z Software defined radio: A radio in which the preset operating parameters 

including inter alia frequency range, modulation type, and/or output power 
limitations can be re-set or altered by software. 

z Reconfigurable radio: Reconfigurable radios are radios whose hardware 
configuration and software can be changed under software control.  

z Cognitive radio: A radio or system that senses and is aware of its operational 
environment and can dynamically, autonomously, and intelligently adjust its 



How to build a SoC like iPhone (v0.3) 

- 17 - 

radio operating parameters. 
z Open Wireless Architecture (OWA): defining the open interfaces in wireless 

networks and systems so that users can buy different parts from various 
vendors. OWA system is upgradeable and extensible. In addition, the system 
can support various standards through open interface parameters. OWA will 
converge with open computer architecture and open network architecture. 

 
 

2.3.2 Baseband chip 
We focus on new solutions. 

2.3.2.1 Texas Instruments 

 
Chip architecture of Texas Instruments 

On-chip functionality is increasing rapidly 
z Digital / analog integration 
z Software, analog, protocol stacks, system interfaces, applications 
z >> 100 Kgates per sq. mm. 
 
Recovering non-recurring engineering/R&D expense 
z Requires increased hardware and software re-use 
 
Programmable DSP will drive the broadband communications market coupled 
with re-usable applicationspecific IP blocks 
 



How to build a SoC like iPhone (v0.3) 

- 18 - 

2.3.3 Desttop frameworks and OS 

2.3.3.1 Android 
The following diagram shows the major components of the Android operating 
system. Each section is described in more detail below. 

 
Software architecture of Android 

Applications 
Android will ship with a set of core applications including an email client, SMS 
program, calendar, maps, browser, contacts, and others. All applications are 
written using the Java programming language. 
 
Application Framework 
Developers have full access to the same framework APIs used by the core 
applications. The application architecture is designed to simplify the reuse of 
components; any application can publish its capabilities and any other 
application may then make use of those capabilities (subject to security 
constraints enforced by the framework). This same mechanism allows 
components to be replaced by the user. 
Underlying all applications is a set of services and systems, including:  
A rich and extensible set of Views that can be used to build an application, 
including lists, grids, text boxes, buttons, and even an embeddable web browser  
Content Providers that enable applications to access data from other applications 
(such as Contacts), or to share their own data  
A Resource Manager, providing access to non-code resources such as localized 
strings, graphics, and layout files  
A Notification Manager that enables all applications to display custom alerts in 



How to build a SoC like iPhone (v0.3) 

- 19 - 

the status bar  
An Activity Manager that manages the lifecycle of applications and provides a 
common navigation back stack  
 
Libraries 
Android includes a set of C/C++ libraries used by various components of the 
Android system. These capabilities are exposed to developers through the Android 
application framework. Some of the core libraries are listed below: 
System C library - a BSD-derived implementation of the standard C system library 
(libc), tuned for embedded Linux-based devices  
Media Libraries - based on PacketVideo's OpenCORE; the libraries support 
playback and recording of many popular audio and video formats, as well as static 
image files, including MPEG4, H.264, MP3, AAC, AMR, JPG, and PNG  
Surface Manager - manages access to the display subsystem and seamlessly 
composites 2D and 3D graphic layers from multiple applications  
LibWebCore - a modern web browser engine which powers both the Android 
browser and an embeddable web view  
SGL - the underlying 2D graphics engine  
3D libraries - an implementation based on OpenGL ES 1.0 APIs; the libraries use 
either hardware 3D acceleration (where available) or the included, highly 
optimized 3D software rasterizer  
FreeType - bitmap and vector font rendering  
SQLite - a powerful and lightweight relational database engine available to all 
applications  
 
Android Runtime 
Android includes a set of core libraries that provides most of the functionality 
available in the core libraries of the Java programming language. 
Every Android application runs in its own process, with its own instance of the 
Dalvik virtual machine. Dalvik has been written so that a device can run multiple 
VMs efficiently. The Dalvik VM executes files in the Dalvik Executable (.dex) 
format which is optimized for minimal memory footprint. The VM is register-based, 
and runs classes compiled by a Java language compiler that have been 
transformed into the .dex format by the included "dx" tool. 
The Dalvik VM relies on the Linux kernel for underlying functionality such as 
threading and low-level memory management. 
 
Linux Kernel 
Android relies on Linux version 2.6 for core system services such as security, 
memory management, process management, network stack, and driver model. 
The kernel also acts as an abstraction layer between the hardware and the rest of 
the software stac 
The following is the Software architecture of Windows mobile: 



How to build a SoC like iPhone (v0.3) 

- 20 - 

2.3.3.2 Windows mobile 
Microsoft provide Windows mobile as their latest version. 
 

 
Software architecture of Windows mobile 

GWES module: 
Graphics, Windows, and Event manager 
Graphic output(display and print) 
User input: keyboard, stylus, mouse, etc. 
Windows management: message routing, etc. 
GWES is the most componentized WinCE module 
GWES exports only a subset of the Win32 API functions 
 
Kernel, GWES, Filesys, and Communications: 
Each module is divided into components 
Build an OS image that fits your needs 
Windows CE configurations: MINKERN, MININPUT, MINCOMM, MAXALL, 
IESAMPLE. . . 
Components can be added, deleted, or replaced 
Execute In Place (XIP) from ROM 
 

2.3.3.3 Qtopia 
The following is the Software architecture of Qtopia: 



How to build a SoC like iPhone (v0.3) 

- 21 - 

 

Software architecture of Qtopia 
 

2.4 Our architecture strategy 
What’s our choice? 
 

2.4.1 Splitting telecommunication features 
Mapping it into hardware and software. 
Hardware is expensive but low power comsumption. 

 
Hardware / Software Split 

The first sets of trade-offs that need to be considered relate to the classic DSP vs 



How to build a SoC like iPhone (v0.3) 

- 22 - 

HW choice. When the design for this SPINNERchip was begun, the WCDMA 
standards were matured, allowing us to consider a HW approach as a viable, 
lower power consumption approach to the design. One cannot dispute that a 
dedicated HW approach will always have lower power consumption and out 
perform a similar solution that is DSP based. In our specific implementation we 
have achieved a 25% power consumption savings compared to an equivalent 
implementation done with multiple DSP cores. Of course, one would argue that 
you give up flexibility by going down the dedicated HW path. This will be 
addressed further in the article. 
 
The second issue addressed was scalability of the design to support future 
revisions of the specifications, mainly surrounding higher data rate 
implementations. The current design is fixed to support up to 384kb/s in both the 
uplink and downlink. Future versions will require up to 14.4Mb/s in support of 
HSDPA. As data rates increase, DSP based implementations become increasing 
complex, as scaling requires adding parallel processors, with inherent timing 
issues to contend with. HW architectures are inherently parallel, enabling a ramp 
to higher data rates with minimal impact on the overall HW structure. In fact, to 
support a 2Mb/s class modem with the SPINNER device would require expanding 
a few of the memory blocks and some minor SW changes, but no major HW 
restructuring. 
 
There were two aspects to flexibility that needed to be considered. Firstly, the 
concern of casting processor blocks into hard coded logic; vs. a more flexible SW 
based DSP approach. In our implementation we have utilized HW blocks to handle 
of the constant tasks, such as Convolutional coding, Viterbi decoding and Turbo 
encoding/decoding, etc and retain the flexibility required for these blocks by 
writing a SW framework around the blocks for rapid programmable control and 
reconfiguration.  An ARM7TDMI-S® is at the center of this control logic. The 
second aspect of flexibility that was required was the ability to connect our device 
to multiple 2G/2.5G host processors, and most importantly be able to do so 
without requiring HW changes on either our SPINNER device or on the various 
host devices we would connect to. This second level of flexibility was achieved by 
utilizing an SRAM memory bus as the interface between the two processors.  
 
Based on the architecture described above, it is clear that our ARM7™ solution 
retains a lot of the flexibility of a DSP solution. Furthermore, with the timing and 
implementation of the data path fixed and deterministic, we are able to easily 
extend the control software without affecting the overall real-time design of the 
system. Furthermore, small change to optimize the SW implementation does not 
influence the overall design requiring an extended re-testing cycle. These features 
of our system design are amongst the most important contributing factors to 
ensuring that the system can meet all the performance requirements of a 3G 
system. In general, one can design a complex DSP system to support a 384kbps 



How to build a SoC like iPhone (v0.3) 

- 23 - 

connection. The difficult part is ensuring that you can still do this while the 
network requests a complex configuration of measurements etc. from the UE. In 
this case, the hardware data path protects the throughput that can be supported 
by the overall solution as opposed to sacrificing some performance in order to 
meet network requirements. 
 
With regard to achieving an optimum physical implementation size for the digital 
baseband co-processor and required analog functions, we compared the size 
implications of parallel DSP cores, with their associated local memory vs. an 
approach of dedicated, but configurable HW. A single RISC based ARM solution, 
with its simplified instructions set and compact code size yielded a more compact 
and scalable solution than a parallel DSP core implementation with its combined 
larger instruction set, code size and local memory requirement. We concluded we 
could achieve a higher performance solution with the HW based approach, in a 
physical die size that for both scalability reasons as well as power consumption, 
would be better than a multi-core DSP implementation. In addition, we included 
the required analog functionality (transmit/ receive DAC/ADC, GP DACs). This 
further improved the cost and size impact by alleviating the need for external 
discrete analog components. We were able to further optimize the SPINNER 
solution by writing a customized RTOS for all scheduling functions. This provided 
significant savings on both code size (2K vs 16K) and a drop from 55 to 37 MIPs. 
The SPINNER architecture was conceptualized to share certain tasks with the 
host processor chip (protocol stack engine, AMR Vocoding, etc) , but at the same 
time minimize the traffic between the two devices so as to reserve the maximum 
bandwidth for data traffic. As mentioned prior, we chose to put algorithms which 
are fixed into HW, and be able to control or parameterize these HW blocks in a 
rapid fashion, some as often as every slot (667us). This hybrid HW/SW split gives 
us the maximum benefit of HW processing power and low power consumption, 
while retaining the needed flexibility for various scenarios that would need to be 
covered by the UMTS specification. 
 
The SW control of the hardware data pipe is best handled by an MCU due to its 
relatively short pipeline and low interrupt latency; an ARM7TDMI® in our case. 
This is imperative for time critical support of items such as power control, which 
requires a less than 45us response. Furthermore, an MCU based control solution 
is best suited for code with many branch statements, such as this implementation 
vs. a code set with high computational requirements, where a DSP would be more 
appropriate. So the choice of putting the low frequency, low computational 
requirements onto the ARM, such as TFCI decoding, power control, etc. provides 
us with a performance advantage and retains the flexibility required to optimize 
these functions during field testing. The hybrid split of HW/SW also facilitates the 
use of a serial port for debugging, which facilitates complete visibility of both 
hardware and software registers. 
 



How to build a SoC like iPhone (v0.3) 

- 24 - 

 

2.4.2 Splitting multimedia features 
Mapping it into hardware and software 



How to build a SoC like iPhone (v0.3) 

- 25 - 

 

3 Chip design 
3.1 Telecommunication subsystem 
Data flow 
 

3.2 Multimedia subsystem 
Data flow 
 

3.3 Application subsystem 
ARM core 
 

3.4 Bandwidth analysis 
Data flow 
 

3.4.1 Streamed Video 
From RF to video 
 

3.4.2 VoIP 
From RF to voice 
 

3.4.3 Video recording 
From camera to LCD and FLASH 
 

3.5 Power consumption analysis 
Power consumption 

3.5.1 Idle state 
Chip with paging 
 

3.5.2 Multimedia state 
Playing video 
 



How to build a SoC like iPhone (v0.3) 

- 26 - 

3.5.3 Talking state 
Making a call 



How to build a SoC like iPhone (v0.3) 

- 27 - 

 

4 PCB design 
4.1 Goal 

4.1.1 Low cost 
Less components. Less layers PCB. 
 

4.1.2 Easy to manufacture 
Simple tools and steps. 
 

4.1.3 Easy to debug 
Powerful debug ports. 
 

4.2 Pinout definition 
Useful and reasonable 

4.3 Layout design 
GSM systems usually combine a digital signal processor core (which handles all 
the real-time data traffic) with a general-purpose controller (which handles the 
protocols and user interface). 

 
Sample PCB of GSM/GPRS 

 



How to build a SoC like iPhone (v0.3) 

- 28 - 

4.3.1 RF block 
Link RF 
 

4.3.2 Baseband block 
Link baseband 
 

4.3.3 Audio block 
Link audio 

4.3.4 Peripherals block 
Link peripherals 



How to build a SoC like iPhone (v0.3) 

- 29 - 

 

5 Software design 
5.1 Telecommunication subsystem 
Protocol stack 
 

5.1.1 Data plane 
Data, such as layer 1. 

5.1.1.1 GSM/GPRS/EDGE 
2G 

5.1.1.2 GSM/GPRS/EDGE/WCDMA/HSDPA 
3G 

5.1.1.3 GSM/GPRS/EDGE/WCDMA/HSDPA/LTE 
4G 

5.1.2 Signal plane 
Layer 2 and layer 3 

5.1.2.1 GSM/GPRS/EDGE 
2G 

5.1.2.2 GSM/GPRS/EDGE/WCDMA/HSDPA 
UbiNetics’ flagship IP offering is the PS300, a complete 3G protocol stack 
supporting multi-mode operation for GSM, GPRS and W-CDMA networks. 
 



How to build a SoC like iPhone (v0.3) 

- 30 - 

 
Architecture for 3G protocol stack 

 
EDGE 
HSDPA 
 

5.1.2.3 GSM/GPRS/EDGE/WCDMA/HSDPA/LTE 
4G 



How to build a SoC like iPhone (v0.3) 

- 31 - 

5.1.3 Modem system software 
OS, AT, etc 
 

5.1.4 Footprint analysis 
Memory size 
 

5.2 Multimedia subsystem 
Audio, video 
 

5.2.1 Accelerator drivers 
Video Accelerator 

5.2.2 Equalizer drivers 
Audio effects 
 

5.2.3 Camera drivers 
Camera input 
 

5.3 Application subsystem 
Application OS 
 

5.3.1 Boot code in ROM 
RedBoot boots FLASH 
 
RedBoot is supposed to be a next generation bootloader from Red Hat, replacing 
CygMon and GDB stubs with a firmware supporting a very wide range of hardware. 
the RedBoot package is fairly well documented, including a RedBoot User's Guide 
that provides actual examples of its use on more than a dozen different systems. 
RedBoot's web site is located at http://sources.redhat.com/redboot/. 
 
RedBoot functions: parse FLASH file system and then loading image.  
Size of RedBoot is about 50 KB? 
 

5.3.2 Linux OS in FLASH 
Linux image and basic file system. 



How to build a SoC like iPhone (v0.3) 

- 32 - 

5.3.3 Input drivers 
LCD and touch panel, sensors 

5.3.3.1 Touch panel 
Until the product is actually available, the best source of information on the 
iPhone’s touch screen is Apple’s patent applications. The most relevant one is 
#2006-0097991, dated May 11, 2006 and entitled “Multipoint Touch Screen.” 
The patent describes two different implementations of projected-capacitive touch 
technology. The first, which Apple calls “self capacitance,” is a simple passive 
array of 24 × 36 sensing electrodes in a single plane. This is commonly known as 
a “matrix” touch panel, and it is commonly used in applications such as industrial 
control panels, membrane keyboards, and other situations where a limited 
number of well-defined areas on a surface need to be made touch sensitive. Since 
it is basically a low-resolution architecture, it is not regularly applied to displays. 
The second implementation of projected-capacitive touch technology described in 
Apple’s patent application is a more traditional structure consisting of two sets of 
parallel rows of transparent conductors, one on each side of a substrate, 
perpendicular to each other. Apple calls this implementation “mutual 
capacitance.” From a sensor point of view, it is essentially the same concept as 
Touch International’s ExtremeTouch™ product. 
 

 

A simplified view of Apple iPhone’s projected-capacitive touch screen. 
 
There are six fundamental touch-vocabulary elements (gestures) in the iPhone 
user interface (UI): 
z Single tap to select or activate something. 
z Double tap to change the display format. 



How to build a SoC like iPhone (v0.3) 

- 33 - 

z Drag and drop to move something. 
z A stroke (“swipe” or “flick”) up/down/ left/right to scroll. 
z “Pinching” two fingers together to shrink something. 
z “Spreading” (un-pinching) two fingers apart to enlarge something. 
 
 

5.3.3.2 Sensors 
Sensors 

5.3.4 Desktop frameworks 
Desttop layout, application management, etc 
 

5.4 Boot sequence 
We make the world more plat 



How to build a SoC like iPhone (v0.3) 

- 34 - 

 

6 Service design 
We suppose 3rd part will provide these kinds of application. 

6.1 Phone services 

6.1.1 Calls 
Make calls 

6.1.2 SMS/EMS/MMS 
Send, receive SMS. 

6.1.3 Phone books 
Contacts 

6.1.4 Fax 
Send, receive Fax. 

6.2 Connection services 
Connect to each other. 
 

6.2.1 WLAN 
For free internet access. 
 

6.2.2 Bluetooth 
For personal access. 
 

6.3 Hot internet services 
Embedded hot internet services. 
 

6.3.1 Browser 
Opera, etc 
 

6.3.2 e-Mail 
Pop3, SMTP, etc. 
 



How to build a SoC like iPhone (v0.3) 

- 35 - 

6.3.3 YouTube 
Free video 
 

6.3.4 GoogleMap 
GPS may be more useful. 
 

6.3.5 Yahoo finance 
Stocks 

6.3.6 Instant messager 
ICQ, MSN, etc 

6.3.7 SIP 
Skype is also a choice. 
 

6.4 Internet multimedia 
iTune 
 

6.4.1 Music 
Download mp3 for iStore. 
 

6.4.2 Video 
Download video for iStore. 
 

6.4.3 Radio 
Listen radio online 

6.4.4 TV 
Watch TV online 

6.5 Games 
Embedded some games 
 

6.5.1 Simulators 
NES 



How to build a SoC like iPhone (v0.3) 

- 36 - 

6.6 PC services 

6.6.1 Programming language 
Perl, php, Python, Ruby, Tcl 

6.6.1.1 Perl 
Script language 

6.6.1.2 Php 
Script language 

6.6.2 Command interface 
SSH, VPN 

6.6.3 Office 
PDF 

6.7 SIM service 
Cope phone bool 



How to build a SoC like iPhone (v0.3) 

- 37 - 

 

7 Tools design 
7.1 Developing tools 

7.1.1 Compilation tools 
Gcc, gdb 

7.1.2 Debug tools 

7.1.2.1 What’s JTAG? 
JTAG: the JTAG port is an IEEE standard interface to on-chip scan register that 
are used to support the production testing of printed circuit boards. The scan 
registers allow signals to be sent out of one chip through its pins, across the PCB 
under test, into a second chip, an scanned out from there. All the PCB solder 
joints, tracks an vias are tested in this way. 
JTAG stands for Joint Test Action Group, the committee set up in the 1980s to set 
up this standard. 
Since the chip has this interface for PCB testing, it is convenient to use it for other 
serial access purposes such as the ARM debug scan chains - it is efficient to 
support debug this way as it does not require any more pins. 
 

7.1.2.2 Debug tools 
Burying a processor deep inside an SoC makes observing its activity much harder. 
The facilities required for good access to processor activity or software debugging 
include: 
z breakpoint/watchpoint hardware: this will stop processor execution 

whenever a particular instruction or data location is accessed 
z mechanisms to examine processor and memory state  
z a ‘trace’ facility to see a record of processor address and data bus activity 

around some triggering event ARM systems provide the first facility through 
the EmbeddedICE system, the second through various scan chain 
mechanisms, and the third through the Embedded Trace macrocell. 

 



How to build a SoC like iPhone (v0.3) 

- 38 - 

 
Debug tool of ARM 

 

7.1.2.3 On-chip debug 
Breakpoints - stopping execution for debug pruposes 
A typical breakpoint debug sequence might be where the user wants to examine 
the values in the processor’s registers at a particular point in the program 
execution: 
z the debug hardware is initialized through the JTAG serial scan chains to set 

the breakpoint 
z the application runs in real time until the hardware detects the breakpoint 

trigger 
z the processor then stops and enters debug mode 
z the debug hardware then presents a ‘STM all registers’ instruction by 

scanning it in through the JTAG port ono the processor’s data bus 
z the processor’s clock is then cycled via scan chain control, causing it to load 

and execute the STM up to the point where it issues the first register value on 
its data output 

z the first register value is captured and shifted out to the debugger via the scan 
chain 

z the processor’s clock is cycled again to yield the second register value, which 
is captured and scanned out, and so on. 

 
Trace information 
If an on-chip core is running at high speed (e.g. over 100 MHz) it would require too 
many pins to get all the address and data information off chip on every cycle. 
Instead, on-chip compression hardware is used to reduce the data rate through 
the pins. 



How to build a SoC like iPhone (v0.3) 

- 39 - 

 
Instruction addresses usually run sequentially, so consecutive addresses can be 
assumed with no data required. 
 
The off-chip debugger has access to the code that is running, so it knows when the 
processor is executing a branch. It only needs one bit of information - whether or 
not the branch was taken- to be able to track the program address. 
 
So, the only time a full program address must be sent from on chip to off chip is 
when the processor executes a subroutine return, table jump, or similar 
computed branch. These are relatively infrequent in typical code. 
 

7.1.3 Simulation tools 
simulator 

7.2 Analysis tools 
Coverage, bandwidth 

7.3 Manufacture tools 
Manufacture 



How to build a SoC like iPhone (v0.3) 

- 40 - 

 

8 Manufacture design 
This is the last step. 
 

8.1 Manufacture flow 
Sample flow 

 

Manufacture flow of MTK 
 

8.2 Software downloading 
Download software to FLASH, such as basic frameworks. 
 

8.3 Calibration 
Calibrate RF, battery and audio variances. 
 

8.4 Factory Settings 
Set IMEI, defaulting settings, etc. 
 

8.5 Resource downloading 
Download multimedia resource into file system of the FLASH. 
Download applications into file system of the FLASH. 



How to build a SoC like iPhone (v0.3) 

- 41 - 

 

9 More than iPhone 
9.1 Goal 
Multimedia + PC experience + Online Game + Internet 

9.2 Less power consumption 
Our solution and key technology 

9.3 GPS 
Our solution and key technology 

9.4 Online game 
Our solution and key technology 



How to build a SoC like iPhone (v0.3) 

- 42 - 

 

10 ROI analysis 
Return On Investment 

10.1 Cost analysis 

10.1.1 Chip cost 
Die cost 

10.1.2 PCB cost 
BOM 

10.1.3 Software cost 
License fee 

10.1.4 Developing cost 
Schedule and HR 

10.1.5 Summary 
Total cost 

10.2 Return analysis 
Market share 

10.3 Conclusion 
Have a try 



How to build a SoC like iPhone (v0.3) 

- 43 - 

 

11 More reference 
11.1 Related media 
Where you can find this document? 
 
Organization:  
www.mpsoc-forum.org  
www.design-reuse.com  
www.edatechforum.com   
 
Journals:  
www.edn.com  
www.cellphone.eetchina.com  
 

11.2 Related documents 
Since I cannot write all details just in one document, please refer to related 
documents for more details: 

11.2.1 Chip design 
How to design the telecommunication subsystem? 

11.2.2 Software design 
How to design a modem? 
How to design layer 1 for a protocol stack? 

11.2.3 Tools design 
How to measure the footprint? 

11.3 Related prototype packages 
Deliver package: 
z Design document 
z C source code of prototype 
z Test tools 
z test report 
 

11.3.1 Multi-touch package 
Multi-touch is … 
 



How to build a SoC like iPhone (v0.3) 

- 44 - 

11.3.2 Fax package 
Fax is … 
 

11.4 More services 
If you meet any problem in implementation phase, please contact with author for 
help. Author can provide more service for you based on your needs, such as 
detailed bug shooting, give training, act as project manager, join technical review 
etc. 
 

11.5 Contact with author 
I started to write this document since 2008/02/25 when I got an iPhone with me. 
But before the writing, I have studied iPhone for several months and have 
collected many data about iPhone already. 
 


