

Writing Zippy Android
Apps
Brad Fitzpatrick
May 20th, 2010

Live Wave: http://bit.ly/aU9bpD

3

Outline

• Me & why I care

• What is an ANR? Why do you see them?

• Quantifying responsiveness: “jank”

• Android SDK features to use to avoid jankiness & ANRs

• Numbers to know

• War stories from optimizing Froyo (2.2)

• New performance instrumentation available in Froyo

• Q&A and/or tell me what you want

• Note: not a talk on the Dalvik JIT (which is cool when CPU-
bound, but often not the problem)

4

About Me

• Brad Fitzpatrick

• Pre-Google:

– Danga.com / LiveJournal / Six Apart

• memcached, OpenID, MogileFS, Gearman, perlbal, djabberd,

• … mix of Social + infrastructure

• <3 Open Source

• Google:

– Social Graph API, ~Google Profiles

– PubSubHubbub, WebFinger

• Now:

– Android performance

– working on Open Source again!

Jank

6

Jank

• Chrome team's term for stalling the event loop

– Chrome's fanatically anti-jank

– “Janky”: not being immediately responsive to input

• “Eliminating jank”

– Reacting to events quickly,

– Don't hog the event loop (“main” / UI) thread!

– Getting back into the select() / epoll_wait() call ASAP, so...

– … you can react to future events quickly (touches, drags)

• Else, ...

ANR!

8

ANRs (“Application Not Responding”)

• ANRs happen when,

– main thread (“event thread” / “UI thread”) doesn't respond to
input event in 5 seconds,

– a BroadcastReceiver doesn't finish in 10 seconds

– typically, when

• doing network operations on main thread,

• doing slow 'disk' operations (un-optimized SQL) on the main thread

• Less than 5 or 10 seconds, though...

– Users: “This app feels janky.” (or “sluggish”, “slow”, …)

Numbers

10

Numbers (Nexus One)

• ~0.04 ms – writing a byte on pipe process A->B, B->A

– or reading simple /proc files (from dalvik)

• ~0.12 ms – void/void Binder RPC call A->B, B->A

• ~5-25 ms – uncached flash reading a byte

• ~5-200+(!) ms – uncached flash writing tiny amount (next...)

• 16 ms – one frame of 60 fps video

• 41 ms – one frame of 24 fps video

• 100-200 ms – human perception of slow action

• 108/350/500/800 ms – ping over 3G. varies!

• ~1-6+ seconds – TCP setup + HTTP fetch of 6k over 3G

11

Writing to flash (yaffs2)

• Create file, 512 byte
write, delete

– ala sqlite .journal
in transaction

• Flash is … different
than disks you're
likely used to

– read, write, erase,
wear-leveling, GC,
…

• nutshell: write
performance varies
a lot

Source: empirical samples over Google employee phones (Mar 2010)

12

sqlite performance

• previous writes were what sqlite does on ~each transaction,

– even no-op transactions (since reported & fixed upstream)

• use indexes

– EXPLAIN vs. EXPLAIN QUERY PLAN

• log files: often much cheaper to append to a file than use a
database

– look at “adb shell cat /proc/yaffs” and look at writes/erases

– sqlite can be pretty write-happy

• sqlite-wrapper.pl tool

– http://code.google.com/p/zippy-android/

• <demo>

13

Lessons so far

• Writing to disk is “slow”

• Using the network is “slow”

• Be paranoid. Always assume the worst.

– given enough users, usage, time...

– users will find your ANRs

– bad Market reviews, uninstalls,

– me filing bugs on your app :-)

Tools

15

android.os.AsyncTask

“AsyncTask enables proper and easy
use of the UI thread. This class
allows to perform background
operations and publish results on the
UI thread without having to
manipulate threads and/or handlers.”

private class DownloadFilesTask extends AsyncTask<URL, Integer, Long> {

 protected Long doInBackground(URL... urls) { // on some background thread

 int count = urls.length; long totalSize = 0;

 for (int i = 0; i < count; i++) {

 totalSize += Downloader.downloadFile(urls[i]);

 publishProgress((int) ((i / (float) count) * 100));

 }

 return totalSize;

 }

 protected void onProgressUpdate(Integer... progress) { // on UI thread!

 setProgressPercent(progress[0]);

 }

 protected void onPostExecute(Long result) { // on UI thread!

 showDialog("Downloaded " + result + " bytes");

 }

 }

 new DownloadFilesTask().execute(url1, url2, url3); // call from UI thread!

private boolean handleWebSearchRequest(final ContentResolver cr) {

 ...

 new AsyncTask<Void, Void, Void>() {

 protected Void doInBackground(Void... unused) {

 Browser.updateVisitedHistory(cr, newUrl, false);

 Browser.addSearchUrl(cr, newUrl);

 return null;

 }

 }.execute()

 ...

 return true;

 }

Fire-and-forget style

Source: Froyo's src/com/android/browser/BrowserActivity.java, roughly

18

AsyncTask Caveats

• Must be called from a main thread

– rather, a thread with a Handler/Looper around

– don't use AsyncTask in a library where caller could call it from
their own AsyncTask. or, check first.

• If called from an activity, the activity process may exit before
your AsyncTask completes

– user leaves activity,

– system is low on RAM,

– system serializes activity's state for later,

– system kills your process (“just a replaceable activity!”)

– if work is critical, use...

19

android.app.IntentService

• Eclair (2.0, 2.1) docs:

– “An abstract Service that serializes the handling of the Intents
passed upon service start and handles them on a handler
thread. To use this class extend it and implement
onHandleIntent(Intent). The Service will automatically be
stopped when the last enqueued Intent is handled.”

– little confusing, thus...

– nobody really used it

• Froyo (2.2) docs, clarified....

20

android.app.IntentService

“IntentService is a base class for Services that handle asynchronous
requests (expressed as Intents) on demand. Clients send requests
through startService(Intent) calls; the service is started as needed,
handles each Intent in turn using a worker thread, and stops itself
when it runs out of work.

This 'work queue processor' pattern is commonly used to offload tasks
from an application's main thread. The IntentService class exists to
simplify this pattern and take care of the mechanics. To use it, extend
IntentService and implement onHandleIntent(Intent). IntentService
will receive the Intents, launch a worker thread, and stop the service as
appropriate.

All requests are handled on a single worker thread -- they may take as
long as necessary (and will not block the application's main loop), but
only one request will be processed at a time.”

21

IntentService benefits

• your activity's process, while processing that Intent, now has
a Service running

• the Android process killer will try really hard not to kill you
now

• but once you're done handling your piece of work, you're now
properly disposable again

• very easy way to use a Service

public class DismissAllAlarmsService extends IntentService {

 @Override public void onHandleIntent(Intent unusedIntent) {

 ContentResolver resolver = getContentResolver();

 ...

 resolver.update(uri, values, selection, null);

 }

}

in AlertReceiver extends BroadcastReceiver, onReceive(): (main thread)

 Intent intent = new Intent(context, DismissAllAlarmsService.class);

 context.startService(intent);

Calendar's use of IntentService

Source: Froyo's src/com/android/calendar/DismissAlAlarmsService.java, roughly

23

Other tips

• disable UI elements immediately, before kicking off your AsyncTask to
finish the task

• do some animation

– e.g. spinner in title bar

• ProgressDialog

– for long-ish operations

– use sparingly. can be jarring / interrupting.

• Combination of above,

– not sure how long it will take?

– start with disabling UI elements, animating something,

– start timer,

– show a ProgressDialog if it's taking over 200 ms.

– in AsyncTask onPostExecute, cancel alarm timer

Non-jank related tools...

25

Traceview

• when CPU-bound

– trace file format supports walltime clocksource, but GUI
traceview tool ignores it, assumes per-thread CPU time

• toggle in code:

– dalvik.system.VMDebug#{start,stop}MethodTracing()

• toggle at runtime:

– adb shell am profile <PROCESS> start <FILE>

– adb shell am profile <PROCESS> stop

26

print “here”

• non-@public class android.os.PerformanceCollector

– I've seen lots of one-off variants

• log occasionally:

– trace point name {start,stop}

– android.os.SystemClock#uptimeMillis()

– dalvik.system.VMDebug#threadCpuTimeNanos()

• watch your own device,

• upload, aggregate, and analyze from users?

– often overkill

Froyo (2.2)

Performance Instrumentation in Froyo (2.2)

• We've instrumented,

– Database queries,

– RPC (Binder) calls,

– ContentResolver,

– Mutex lock contention in Dalvik,

• How long? Main thread or not? Which thread/process?
Which build?

• Log a small percentage to in-memory ring-buffer

• Service (on Google employee dogfooder phones) uploading
a few MB/day/phone for analysis, report generation

• Found & fixed many things, often surpising

Performance Instrumentation in Froyo (2.2)

• Not a generic debugging feature yet, but somewhat usable...

• Log vs EventLog

– Log: text ring-buffer (adb logcat), apps use this.

– EventLog: binary structured ring-buffer (adb logcat -b events),
intended for low-level platform development work only

• EventLog records:

– db_sample

– binder_sample

– content_query_sample

– content_update_sample

– dvm_lock_sample

Coming later

31

After Froyo

• more instrumentation

– more granular db stats, mutex lock->unlock duration stats...

• easier to use during app development

• API additions to let you force “strict mode” in your apps,

– prevent read and/or write I/O on your main thread

– prevent slow Binder calls to other processes doing I/O

– prevent network I/O on the main thread

• let users opt-in to performance collection (system-wide or app-by-app?
separate app?)

– surface empirical performance data to developers through Android Market?

• sqlite WAL

maybe? speculative...

Summary

Summary

• Get off the main thread!

• Disks & networks aren't instantaneous

• Know what sqlite is doing

• Instrumentation is fun :-)

• More speed goodness coming post-Froyo...

• Code, tools from this talk:

http://code.google.com/p/zippy-android/

• Q&A? Live Wave: http://bit.ly/aU9bpD

http://code.google.com/p/zippy-android/

	Slide 1
	Title Goes Here Up To Two Lines
	Presentation Bullet Slide Layout
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

