

Building Push Applications
for Android
Debajit Ghosh
May 20, 2010

View live notes and ask questions
about this session on Google Wave
http://bit.ly/ac2dmwave

4

Outline

•  Accessing Data in the Cloud

•  Polling and Pushing

•  Android Cloud to Device Messaging

•  Demos

•  Summary

5

Accessing Data in the Cloud

•  Apps provide seamless access to data in the cloud
–  Mobile Alerts

–  Send to Phone
–  Background Sync

•  Challenge: How do you keep data on a device fresh?

6

Polling

•  Simple to implement

•  Device periodically asks server for new data
–  Radio draws a lot of power, stays on for several seconds

–  Ideally, use If-Modified-Since, If-None-Match, etc.
•  Make no-ops as cheap as possible

•  Appropriate for content that changes constantly
–  Stock Quotes, News Headlines

–  Poll infrequently, update on demand

7

Impact of Polling on Battery

Source: Android development team at Google

•  Baseline: ~5-8 mA

•  Network: ~180-200 mA

–  Tx more expensive than Rx

•  Radio stays on for few secs
•  ~0.50 mAh for a short poll

–  5m frequency: ~144 mAh / day

–  15m frequency: ~48 mAh / day

8

When to Poll?

•  Tradeoff between freshness and efficiency
–  Poll frequently – more fresh, less efficient

•  Desire: Push, don’t poll
–  Only fetch data when useful

9

Pushing

•  Enables freshness with less impact on battery
–  Only use network when necessary

–  Constant overhead of persistent connection

•  Google Contacts, Calendar, Gmail, etc., use push sync

•  Can be tricky to implement

•  Android Cloud to Device Messaging makes push easy

10

Android Cloud to Device Messaging

•  Simple Google API
–  Android 2.2 devices with Market

–  Will be open to all developers

•  Uses existing connection for Google services

•  Allows servers to send lightweight “data” messages to apps
–  Tell app new data available

–  Intent broadcast wakes up app
–  App supplies UI, e.g., Notification, if/as necessary

•  Best effort delivery

11

Peeking Under the Hood

•  Background service
–  Honor background data setting

–  Start when network available

•  Maintain connection with server
–  Use heartbeats to keep alive, detect dead connections

•  Efficient
–  Minimize per connect overhead
–  Minimize heartbeat frequency

–  Minimize concurrent connections

12

Heartbeats

PING

SERVER
ACK
X ✓

•  Use Alarms

•  (Re)schedule pings
•  Wait for acks

•  Reconnect when dead

•  Can also initiate ping

•  May be half open
•  Clean up state when dead

13

Overview of Lifecycle

•  Enabling cloud to device messaging
–  App (on device) registers with Google, gets registration ID

–  App sends registration ID to its App Server

•  Per message
–  App Server sends (authenticated) message to Google

–  Google sends message to device

•  Disabling cloud to device messaging
–  App can unregister ID, e.g., when user no longer wants push

14

Life of a Message

APP
 SERVER

GOOGLE

C2D MSG
 FRONTEND

CONN
 SERVER

APP

WAKE

UP!

15

Registration – Requesting a Registration ID

// Use the Intent API to get a registration ID

// Registration ID is compartmentalized per app/device

Intent regIntent = new
Intent(“com.google.android.c2dm.intent.REGISTER”);

// Identify your app

regIntent.putExtra(“app”,

 PendingIntent.getBroadcast(this, 0, new Intent(), 0);

// Identify role account server will use to send

regIntent.putExtra(“sender”, emailOfSender);

// Start the registration process

startService(regIntent);

16

Registration – Receiving the Registration ID

•  App receives the ID as an Intent
–  com.google.android.c2dm.intent.REGISTRATION

•  App should send this ID to its server

•  Service may issue new registration ID at any time
–  App will receive REGISTRATION Intent broadcast
–  App must update server with new ID

17

Registration – Receiving the Registration ID

// Registration ID received via an Intent

public void onReceive(Context context, Intent intent) {

 String action = intent.getAction();

 if (“…REGISTRATION”.equals(action)) {

 handleRegistration(context, intent);

 } }

private void handleRegistration(Context context, Intent intent){

 String id = intent.getExtra(“registration_id”);

 if ((intent.getExtra(“error”) != null) {

 // Registration failed. Try again later, with backoff.

 } else if (id != null) {

 // Send the registration ID to the app’s server.

 // Be sure to do this in a separate thread.

 } }

18

Sending Messages

•  Get “ac2dm” auth token, install on server
–  http://code.google.com/apis/accounts/docs/AuthForInstalledApps.html

•  Send authenticated POST
–  https://android.apis.google.com/c2dm/send

–  Authorization: GoogleLogin auth=<auth token>
–  URL Encoded parameters

•  registration_id

•  collapse_key

•  (optional) delay_while_idle

•  (optional) data.<key>*

19

Sending Messages – Response Codes

•  200 OK
–  With “id” – request succeeded, message enqueued

–  With “Error” – request failed
•  QuotaExceeded, DeviceQuotaExceeded: Retry after a while

•  InvalidRegistration, NotRegistered: Stop sending messages

•  MessageTooBig: Reduce size of message

•  MissingCollapseKey: Include collapse key in request

•  401 Not Authorized: Get new auth token

•  503 Service Unavailable: Retry with backoff

20

Receiving Messages

•  Device receives message, converts to Intent

•  App woken up/started by Intent broadcast
–  com.google.android.c2dm.intent.RECEIVE

–  data.<key>* set as Intent extras
–  App needs com.example.app.permission.C2D_MESSAGE

public void onReceive(Context context, Intent intent) {

 String action = intent.getAction();

 if (“…RECEIVE”.equals(action)) {

 // Grab a wakelock, use IntentService to do work

 }

}

21

Collapse Keys

•  Latest message replaces older ones with same key

•  Avoids message explosion for offline device

•  App may use multiple collapse keys
–  Correspond to “feed” app will fetch

–  Max of four in flight (per device)

•  State should be in app server, not in message
–  Tell app when it should fetch data

22

Collapse Keys

APP
 SERVER

GOOGLE

C2D MSG
 FRONTEND

CONN
 SERVER

23

Attenuation

•  Messages may not be delivered to device immediately

•  Protects devices that are receiving many messages
–  Avoid constant radio wakeup

•  Attenuation per app/collapse key

24

Attenuation

APP
 SERVER

GOOGLE

C2D MSG
 FRONTEND

CONN
 SERVER

25

Delay While Idle

•  Device tells Connection Server when screen is on, off
–  Screen off == device is idle

•  Apps can request message only be delivered when active
–  Avoid waking up device with info that will not be seen/used
–  e.g., chat presence, friend location updates

26

Delay While Idle

APP
 SERVER

GOOGLE

C2D MSG
 FRONTEND

CONN
 SERVER

Zzzz

27

Demo: Google Chrome to Phone Extension

•  Send any web page to Android device
–  Special handling for Maps, YouTube

•  Chrome Extension

•  App Engine backend

AC2DM

APP
 ENGINE

ORIGIN

SERVER

28

Demo: JumpNote

•  Notes, with two way push sync
–  App Engine backend, GWT UI

•  Uses Sync Framework

•  Uses Android Cloud to Device Messaging
–  Register, Unregister based on auto-sync selection

public void onReceive(Context context, Intent intent) {

 String action = intent.getAction();

 if (“…RECEIVE”.equals(action)) {

 // Determine account, feed that changed …

 context.getContentResolver.requestSync(account, “…jumpnote”, extras);

 }

}

29

Android Cloud to Device Messaging Signup

•  Launching in Labs, accepting signups

•  Visit http://code.google.com/android/c2dm for details

30

Summary

•  Many Android apps access data in cloud

•  Push keeps apps up to date, efficiently

•  Android Cloud to Device Messaging makes push simple

•  Sign up now
–  http://code.google.com/android/c2dm

View live notes and ask questions
about this session on Google Wave
http://bit.ly/ac2dmwave

